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A linear, unsteady theory is developed that relatcs
transient rotor loads (thrust, roll moment, and pitch momcnt)
to the overall transient response of the rotor induccd-flow
field. The relationships are derived from an unsteady,
actuator-disc theory; and some are obtained in closed form.
The theory is used to determine the effects of 1lift distri-
bution and shaft angle-of-attack on the said relationships.
Also, two different assumptions are used in the unsteady
calculations. Finally, a prescribed wake analysis is used
to validate the actuator-disc theory for normal flight
conditions. The results reveal both the strengths and
weaknesses of previous formulations and reveal areas in
which further study is needed. The most significant rcsult
is an analytic, thrce-degrce-of-frecedom inflow model that
is shown to be accurate for use in the dynamic analysis of
rotors.
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ROTOR DYNAMIC INFLOW DERIVATIVES AND TIME

CONSTANTS FROM VARIOUS INFLOW MODELS

1. INTRODUCTION

Since the inception of the autogyro and helicopter, in-
vestigators have tried physically and mathematically to
describe the airflow through the rotor system. The knowledgc
of the total airflow distribution through and about the heli-
copter rotor is required to adequately analyze the following
characteristics of the helicopter: a) performance, b) vi-
bration, c¢) rotor stability, d} controllability, e) acoustic
signature, and f) rotor air loads and structural limitations.
Over the years, a multitude of approaches have been developed
to model mathematically the rotor flow-field. Much of the
early flow-field theories were based either on the then-
existing propeller theories or on fixed-wing aerodynamic
analogies. However, in the last decades, rotatory-wing aero-
dynamics no longer depend on fixed-wing analogies but on
theories and math models especially derived for helicopter
rotors.

The present rotor inflow theories range from the

extremely simple momentum theory to the very complicated




vortex lifting-line and lifting-surface theories that re-
quire large computer space and long computer time in their
solution process. Uniform inflow is usually associated with
the momentum theory while the more complicated vortex
theories generally reflect nonuniform inflow. The degree
of nonuniformity of the induced velocities is highly de-
pendent upon the rotor's flight condition. The simple
models have yielded good results in hover where the inflow
can be assumed to be uniform with azimuth. Forward flight,
on the other hand, causes unsymmetrical velocities on the
rotor both radially and azimuthally. The bladc motions

of flapping, coning, and torsion result ji: an instantancous
induced flow field that has inplane, rotational, and normal
velocity components that vary with time as well as with
rotor azimuth. Consequently, nonuniform inflow theories
are used when modeling forward flight.

The majority of the present inflow theories adequately
predict steady-state performance and blade responses. How-
ever, these theories do not attempt to model inflow effects
due to transients in thrust. The transients in rotor thrust
result from pilot-controlled maneuvers, wind gusts, or coupled
rotor-body oscillations.

The intent of this research is to examine the various
helicopter inflow theories, and determine which ones are

suitable for predicting the transient inflow velocities.

Therefore, one of the actuator-disc inflow theories is

{ |
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extended and modified to obtain dynamic-inflow derivatives

s

and time constants. The range and validity of the actuator-

disc assumption is then determined by exercising a prescribed-

R

wake, lifting-line inflow theory.




-4-

2. PREVIOUS WORK

Before we proceed with the development of a suitable
dynamic inflow theory, we will review some of the better
known static inflow theories. Although each theory has
merit, it would be impossible, and beyond the intent of
this research, to modify each of the theories to predict
unsteady inflows.

Consequently, the intent of this synopsis is to
briefly describe and comment on the various inflow models
and theories that were reviewed and researched. The ad-
vantages, disadvantages, assumptions, and purpose of the in-
flow theories will be examined, in order to determine those
that might be used to determine the dynamic inflow character-
istics of a rotor. The theories will generally be addrcssed
in order of sophistication.

2.1 GENERAL INFLOW THEORIES
2.1.1 Simple Actuator-Disc Theories

Sirle momentum theory was employed by Glauert (1)* to
describe the inflow through the rotor system of the auto-
gyro. Simple momentum theory is based on the assumption
of an actuator-disc which is loaded uniformly azimuthally
(although it may vary radially). Thus, the theory assumes
an infinite number of blades without tip losses. In hover,
this results in an inflow distribution for which the induced

———— e a.

* The numbers in parentheses in the text indicate references
in the Bibliography.
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velocity is assumed to be normal to the rotor plane. The
magnitude of the induced velocity, Voo for the special case

of uniform loading, is given by

T J.L,
o Tym T VE ®

It should be noted that the value cof induced velocity from
momentum theory is independent of rotor speed, number of
blades, chord length, or airfoil selection. For the forward-
flight condition, the theory utilizes the analogy of an

elliptically loaded wing having a span of 2R. Glauert

assumes that the total velocity, VR’ through tlhe rotor disc

is the vector sum of the induced velocit: and the forward
flight velocity, V. Hence, the induced velocity for the

case of forward flight is:

T D.L.
v [ J— = : (2)
o szTRZVR 2oVp

The induced velocities, Vs is assumed normal to the plane
of the rotor and constant (or uniform) over the rotor disc.
The induced velocity through the rotor in forward flight

or in hover is independent of rotor speed, number of blades
and also rotor angle of attack. Sissingh (2) noted for for-

ward flight, and for V>>v°, that equation number (2) can be

simplified to

v (3
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This shows that the induced velocity is inversely propor-
tional to forward flight velocity.

Glauert in reference 1 further refined the momentum
theory by assuming that in forward flight there is a linear
variation of the induced velocity along the rotor disc from
the leading edge to the trailing edge. The relationship he

proposed was a first-harmonic variation

v =v, (1+ K Cosy) (4)

In equation number (4), Ve

from the momentum method. The value of the slope K was left

is the induced velocity calculated

undetermined. However, Glauert thought that it should be
between 0 and 1. A positive K implies that the induced
velocity is a minimum at the leading edge of the rotor and

a maximum value at the trailing edge as shown in figure 1.

Forward A
Velocity Thrust
Leading Trailing
Edge Edge
Induced
Velocity

Figure 1. Glauert's Linear Variation of Momentum
Induced Velocities Along the Rotor Disc
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A significant advantage of momentum theory is that it is

a simple represcntation of the rotor inflow and is an easy
modecl with which to work. When used in conjunction with
other computer programs (e.g. loads, performance, etc.)

only moderate computer time or space allocation is required.
The disadvantage of momentum thecory is that it does not
model details of the inflow. The magnitude of the inflow
velocity and the detailed performance are not completely
accurate in the region of transitional flight.

The constant-inflow assumption of simple momentum
theory in hover can be removed by the blade-element theory.
The blade-element theory for hover is dev:loped in reference
(3). The thrust produced by each concentric ring or annulus
of rotor disc is obtained as a function of the rotor inflow
at that point. The inflow at cach element can be determined
by a balance of the thrust of the annulus with the overall
momentum change in the airflow through that annulus. The

induced velocity in hover from the blade element theory

_ -bcaf bcaf
vir) = g7 *JTB?:“

Note that the induced velocity depends on number of blades,

is:

2 2
) o+ beg2xd (5)

chord length, slope of the 1ift curve of the airfoil, and
pitch at the particular radial station. Equation (5) was
also derived using simple vortex theory by Knight and Hefner

in reference 4. For the hover condition, equation (5)
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compares favorably with measured results as shown in figure

2 from reference 5. -

or ’ ‘ - |

20
Induced
Velocity
(Ft/sec)

10

0 ] I ) s _1
.2 b .6 .8 1.0 {

Nondimensional Blade Radius

Figurc 2. Blade-LClement Theory Induced Velocity
Distribution for the Hover Cuondition. ‘

Stepniewski, relerence 6, fevclops a hladc-element
method of determining the downwash distribution along the
fore-and-aft rotor diameter for the case of horizontal
flight. It i< possible to determine from the blade twist
both the geometric and equivalent pitch angle of each blade
element along the fore-and-aft disc axis. Stepniewski em-
ploys a finite diffefence procedure to obtain the induced
velocity. The requirement to know the magnitude and
direction of the relative airflow in the immediate vicinity
of the element of the blade is considered a disadvantage
of the blade-element method.

Harris and McVeigh (7) utilized the blade-element

method of fixed wing aerodynamics rather than the classical
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blade-element, momentum thcory to determinc rotor inflow.
They postulated that, in order to acquire zero lift at the
tip and root of the blade, the angle-of-attack of the re-
sultant airflow at the tip and root must be zero. Consc-
quently, the induced velocity must increase from the
uniform downwash level and ultimately reach an increment
of velocity that is nearly twice the uniform downwash level
to satisfy the boundary conditions of a practical rotor.
Although the method is an improvement over the classical
blade-element theory, it has not yet been developed for
forward flight and is impractical for transient analysis.
Other than equation (4), all the ther:ies discussed
to this point assume uniform inflow (or induced velocities)
in the azimuthal direction. 1In reference 8, Harris questions
the validity of this assumption. He shows considerable
discrepancy between the predicted lateral flapping and the
measured values, concluding that significant fore-and-aft
downwash must be occurring.
2.1.2 Simple Vortex Theories
The simple vortex theories were contrived before the
advent of the computer, thus numerous assumptions were
made to simplify the mathematics. These theories describe
the wake as a semi-infinite cylindrical vortex sheet that
is effused from the rotor blade tips. An infinite number of
blades (i.e., actuator disc concept, uniform blade loading,

and neglect of wake contraction) is implied by this theory.
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The Biot-Savart law is used to calculate the induced
velocities caused by the vorticity sheet.

Knight and Hefner (4) were the first to use this
theory in determining the induced velocity and thrust of
a hovering rotor. Coleman, Feingold, and Stempin (reference
9) extended the hovering theory of Knight and llefner to
forward flight. The rotor wake was assumed to be an ellip-
tic cylinder of vorticity skewed with respect to the rotor
axis at an angle (i.e., wake skew angle) that depends upon
the flight velocity and upon the induced velocity. Uti-
lizing this method, they were able to calculatec the fore-
and-aft variation of the inflow of the rctor as proposed by
Glauert in equation (4). The Glauert constant, K, was

explicitly expressed in terms of the wake skew angle, x.

K = tan (x/2) (o)
The induced velocity could thus be written as

v(r) = v (1 + r tan (x/2) cosy) (71

The induced velocity is, therefore, expressed as a function
of the blade radius and azimuth position.

The simple vortex theory was further improved by
Castles and DelLeeuw and Castles and Durham in references 10
and 11. In their analysis, they employed the same wake shapc
utilized by Coleman. With numerical integration, the in-
duced velocity normal to the rotor disc was calculated on

the lateral rotor axis.
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Heyson in a series of papers, references 12-16, im-
proved on the previous simple vortex theories. He removed
the uniform loading assumption by modeling the wake as a
number of parallel and concentric vortex cylinders. The
overall inflow field, representing the radially nonuniform
loaded rotor, is obtained by superposition of the respec-
tive velocity fields of each vortex cylinder. Consequently,
this method yields a symmetrical inflow field about the
longitudinal plane of symmetry of the rotor. The calcu-
lation of the flow field using the simple vortex theory is
greatly complicated by the inclusion of terms representing
azimuthal variations in circulation. 1In rcierence 14,
Heyson developed the equations for all three components of
induced velocity at an arbitrary point near the rotor and
for an arbitrary harmonic of the azimuthal distribution of
circulation. The values for the induced velocity cannot be
expressed in closed form, and they are obtained by numerical
integration. This process was utilized in obtaining the
charts and table of induced velocities in reference 15. 1In
order to obtain a realistic azimuthal load variation, the
simple vortex method must utilize numerical integration.
Thus, if the computer is required, thought should be given
to the more exact lifting-line and lifting-surface theories.
The simple vortex theory, even in the most complicated form
developed by Heyson, is still based on actuator theory

(i.e., infinite number of blades).
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The last of the simple vortex inflow theories to be
examined is the flat-wake concept. As promulgated in
refcrence 17, the flat-wake thcory represents a limiting
case wherc all the vortices transferred to the slipstream
of a rotor, moving horizontally at a relatively high speed,
are reduced to a single ribbon of vorticity. Baskin et al.
made the assumption that for the flat-wake concept, the
variation of circulation with azimuth may be neglected, pro-
vided that for each blade station the circulation is aver-
aged over a complete rotor revolution. Consequently, the
radial change Fb(r) of the azimuth-averaged bladc circu-
lation becomes the only variation to be cciusidered. The
assumption of a rigid wake implies that no interaction
exists between the induced velocity and the wake structure,
thus the problem reverts to a linear problem. In computing
the resultant induced velocity, the velocity components
generated by the lateral vortices and the longitudinal
vortices subsystems fbrming the wake are computed separately
and then superimposed. The induced velocity in the flat-
wake theory is not expressed by a closed form equation,
but must be determined numerically. 1In addition, the
circulation distribution must be assumed or known prior to
induced velocity calculations. The validity of the flat-
wake concept is compromised at low u values, because the
deflection of the wake in the vicinity of the disc is large.

Ormiston developed a flat-wake concept in reference 18
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similar to the previously described flat-wake vortex theory.

5
|

A general actuator-disc theory was developed for predicting

the time averaged induced velocity distribution and the

steady state force and moment response of a helicopter rotor
in forward flight. A solution was obtained by using the
harmonic balance method. The actuator disc theory included
blade flapping dynamics. Examination of the harmonic content g
of the rotor blade flapping moment disclosed that the first :
harmonic terms, which determine the thrust and moment

response of the rotor, are not affected by downwash har- ]

monics higher than the second. Only the first two harmonic

—

of dovnwash were retained for prediction .\ rotor thrust and

moment response.

ey

! 2.1.3 Vortex Theories-Finite Number of Blades
; An inherent limitation of the simple vortex theories, ]
is that the calculated induced velocities are time-averaged,
rather than instantaneous. As noted by Heyson in reference
16, the time-averaged induced velocities give excellent re-
sults for rotor/wing interference problems, but are totally

inadequate for calculating the blade loads. To satisfactorily

determine the instantaneous induced flow field for a rotor

with a2 finite number of blades, the vortex wake from each

blade must be considered.
A vortex wake analysis that considers a finite number

of helicopter rotor blades was first performed as early as

1929 by Goldstein (19). He determined the flow resulting
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from a set of semi-infinite, equidistant, coaxial, helical

surfaces, with each surface representing the vortex sheet

for cach blade of the rotor. The theory of Goldstein was
made directly applicable to the hovering helicopter rotor
in reference 20 by Lock. The Goldstein-Lock analysis
neglects the effects of wake contraction, viscosity, and
nonuniform downwash. For years, this method became the
classical method of calculating rotor hovering performance
and inflow. The advantage of the method was that it en-

tailed minimal computational requirements. However, its

usage was outdated with the advent of the high-speed
computer as delineated in reference 21. % concise history
and description of helicopter rotor wakes is given by
Landgrebe and Cheney in reference 22, which has as its
primary interest rotor performance.

One of the forerunners of the computerized vortex

theories, and one which resulted in nonuniform inflow, was

that of Piziali. In references 23 and 24 he calculated
the nonuniform inflow for a rotor in hovering and forward
flight. An undistorted rigid wake was assumed, and each
blade was replaced by a segmented lifting line. The shed
and trailing vorticity distributions were reprcsented by a
continuous mesh of straight-segmented, vortex filaments

originating at the instantaneous position of the blade as

shown in figure 3. The strengths ™ of the bound vortex
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Figure 3. Undistorted Rigid Wake Distribution of the
Lifting Line Vortex Theory

elements are considered to be the unknowns., ind the computer
iterates until a solution for the given ¢light conditions
is obtained. The primary disadvantage of this method is
that computer time can become large and that the nonuniform
inflow velocities are not time dependent, i.e., although
the calculated induced velocities are instantaneous, they
do not vary with time. An improved wake model was required
because the blade inflow was found to be responsive to wake
distortions. This led to the development of the distroted,
free-wake analysis and to the empirically-prescribed wake
analysis. References 25 through 27 are an exemplification
of some of the free-wake computer analyses developed. Cen-
erally, the wake from each rotor blade is represented by
segmented vortex filaments which are allowed toc move or

distort freely until wakc convergcence. No preconcecived

aaiielin
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assumptions are made regarding the wake shape. Convergence
implies that the wake geometry is consistent with the
velocity field it induced. 1In contrast to the rigid-wake
method of Goldstein-Lock, which could be managed through
classical mathematical techniques, the computational pro-
cedure required in the free-wake method could only be
accomplished by use of computers.

A conception of the magnitude and complexity of the i
free-wake inflow analysis is given by reference 28, where it '

is stated that for a single flight condition of a six bladed L
!

rotor, assuming an azimuth increment for the calculations of
30 degrees and each blade represented by !0 filaments, 1000
wake elements were required. This results in the computation
of 72 million distortion velocities per flight condition.

As a means of increasing the accuracy of the free-wake f
analysis and of decreasing the computational time, empirically

prescribed wake models were generated. Test of both full scale

and model helicopter rotors has shown that the rotor, espc-
cially in hover, is heavily influcnced by wake distortion
effects. Landgrebe, in a series of papers and reports (28-31),
describes the prescribed-wake theory. The wake shapec is spoci-
fied for the particular flight condition utilizing the gecner-
alized wake equations and wake constants which are derived
from experimental data.

The above wake theories are all based on the lifting-line

theory, i.e., each blade was modeled by a single bound vortcx
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filament. This model is justifiable for slender rotor
blades, however it may be compromising when employed in
rerresenting low aspect-ratio blades. Subsequently, lifting
surface theories were develcoped to improve the physical rep-
resentation of a rotor blade. A lifting surfacc theory was
used by Johnson and Scully in their calculation of airloads
and by Kouarcek and Tangler to determine the performance of
a hovering rotor. In refecrence 32, Johnson and Scully
utilized a distorted wake 1ifting surface theory to detcr-
mine the variable inflow in their helicopter airloads
calculations. Johnson's lifting surface theory (33) was
used to calculate vortex induced loads. ~cully's method,
contained in references 34 and 35, was used to calculate the
self-induced distortions of the vortex wake in forward flight,
Kocureck and Tangler in reference 36 developed a pre-
scribed wake, lifting-surface analysis for hovering rotors
with low aspect ratio blades. The prescribed-wake method
was an extension of Landgrebe's method. Additional data from
model studies of low-aspect-ratio blades by Tangler was used
to extend the data base. The 1ifting surface, as detailed in
reference 37, is imagined to be formed by a continuous layer
of horseshoe-shaped vortices of finite strength. The un-
knowns in the solution technique are the circulation strengths
of each panel. The method of solution is similar to the pre-
scribed 1ifting linc wake theory, except that the boundary

conditions must he satisfied. Onc of the boundary conditions
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is that the Kutta condition is satisfied. The second bound-
ary condition is that the circulation distribution must in-
duce normal downwash velocities sufficient to cancel locally
the component of the free-stream velocity normal to the
blade surface. As with the lifting-line vortex theories,

a high-speed computer is required to calculate the induccd
velocities at each flight condition. Closcd-form solutions
for the induced velocity distribution are not rcadily ohtain-
able in the more complicated vortex theories.

2.1.4 Improved Actuator-Disc Theories

The complexity of the vortex theories results in
excessive computer time. Recently, much .ork has becen accom-
plished in the area of improved actuator theories. The con-
cept behind the actuator theory is to provide an approximate
induced velocity distribution with a modest computational
requirement.

Wood and Hermes in reference 38 developed a method basced
upon momentum thecory for obtaining the induced velocity dis-
tribution of a helicopter rotor in forward flight. Their
theory determines induced velocity as a function of bhoth
blade radius and azimuth. The theory is based upon two
simple factors, the first of which is that the induccd veloc-
ity field of a rotor in hover cuan be detcrmincd by combined
bladc-element and momentum theory. The sccond fact is that

the induced velocity buildup for a rotor blade subjeccted to
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a sudden change of angle-of-attack is essentially exponential
and can readily be approximated by an exponential function,
(Carpenter and Fridovich (39)).

Vood and Hermes rationalized that a blade in forward
flight is constantly entering undisturbed air thus the in-
duced velocity caused by this blade would increase with time
analogous to the sudden change in an angle-of-attack cxperi-
ment. The total induced velocities are then obtained by
superposition. A disadvantage of the theory is that a
difficult coordinate transformation is required.

Azuma and Kawachi (40) developed an extended momentum
theory that they call ''Local Momentum The- vy" for helicopter
rotor aerodynamics. As derived, the theory is applicable
for both steady and unsteady acrodynamic problems becausc
it calculates the mean induced velocity and also the instan-
taneous induced velocity. The theory is based on the
instantaneous momentum balance with the blade elemental
1ift at a local station of the rotor rotational plane. The
rotor blade is considered to be decomposed into a series of
wings, each of which has an elliptical circulation distri-
bution and is so arranged that a tip of each wing is aligned
to the blade tip. Azuma and Kawachi state that the compu-
tational time of their theory is about one tenth to onec
hundredth of that of the vortex theory. Stricker and

Gradl (41) have developed a scmi-empirical downwash model

which combines momentum theory with properties of the vortex

P
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wake model to calculate the radial and azimuth variation of
the rotor inflow. The semi-empirical downwash model is based
on the principle of superposition. The basic inflow model,
for both hover and forward flight, is that calculated by the
method of Wood and Hermes (38). The basic inflow model is
then adjusted by adding wake contraction and tip loss cffects.
The wake contraction is simulated by a wake of up to 4 rings
of vortices where the wake geometry is taken from Landgrebe's
prescribed wake model of reference 29. Tip losses are sim-
ulated by an increase of induced velocity as proposed by
Prandtl. Then, the induced velocity portions from modified
blade element momentum theory, from wake gontraction sim-
ulation, and from tip loss calculation are summed to obtain

the local induced velocity as shown in figure 4.

Induced Vzlocities

Local Momentum Theory VIMT
Wake Contraction vue
Tip Losses

Resultant
v e VLHT + Vuc + VTL

< Ff
V)

Blade Radius

Figure 4. The Sermi-Empirical Incduced Velocity
Superposition Theory of Stricker and
Gradl.

ol
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Stricker and Gradl state that their semi-empirical method
requires 0.2 to 1.0 minutes to get a trim solution, while
the free wake analysis requires 2 to 20 minutes. .

Mangler and Squire (42) in the late 1940's adapted the

velocity and acceleration potential concepts to the deter- L

mination of the induced velocity field of a rotor. They

were able to determine the mean induced velocities in for-
ward flight by assuming a pressurc distribution across the
rotor disc. The helicopter rotor was assumed to be lightly
loaded and was composed of an infinite number of blades.
The rotor was assumed to be replaced by a circular disc
with a pressure step between the faces. .onscquently, the
thrust of the rotor is equivalent to the discontinuity in

pressure forces between the two faces of the disc.

Mangler and Squire also showed that the Laplace

equation, VZP = 0, and the continuity equation, div V = 0,

must be satisfied everywhere in the flow field. Solution

of the Laplace equation is found in terms of Legendre ﬂ
functions of the elliptic coordinates associated with the H
disc. These are discontinuous between the two faces of the
disc but continuous everywhere clse. To simplify the math,

only the case of an axially-symmetric load distribution was

considered (i.e., load was only a function of radius and not
azimuth position). The rotor loading distribution is ex-
panded in a series of Legendre functions, so that the first

term produces the entire thrust T and the rest of the sceries
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produces only variations in the load d.stribution. Three
different pressure distributions are obtained. Pressure
distribution I is an elliptic load distribution. The second
term of the series yields the second pressure distribution
which is solely used as an intermediate step to the third
pressure distribution. Pressure distribution II1I, which is
a linear combination of pressure distribution I and 11, was
selected such that the thrust vanishes both at the center
and edge of the rotor disc. This is a very good approxi-
mation for the actual thrust distribution on a rotor.

Figures 5 and 6 depict the induced velocity distribution
along the longitudinal and lateral plane I symmetry respec-
tively. Thz2 induced velocity was calculated using pressurc
distribution 111 and the measured data was obtained from
reference 12. The correlation of the measured data with the
calculated induced velocity distribution of pressure 111 is
good. Stepniewski, in reference 6, shows that the average
value of induced velocity from Mangler and Squire's thecory
is the same as obtained by Glauert in reference 1 (cquation
2 of this paper).

Joglekar and Loewy (43), in an attempt to improve blade-
response and blade-airload calculations, extend the theory
of Mangler and Squire. They develop expressions for relating
the assumed pressure field of the rotor disc to the total
aerodynamic thrust and the total steady pitching and rolling

moments attributable to the rotor. They also successfully
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relate the assumed pressure distribution to the time-

dependent aerodynamic rotor blade flapping moments. The
modified actuator-disc theory was used to provide a more
realistic wake-geometry into the classical, vortex-wake
program of Piziali (references 23 and 24). An improved
1ift distribution is developed in order to get a better

approximation to the time-averaged induced velocity field.

Leading Edge Trailing Edge
3 4 1 L T r T | — g 1

L X = 75° i
2 k u = 0.095 /o o

. : P.D. 111

/ -
O% Measured o

Nondimensional Blade Radius

Figure 5. Comparison of Measured and Mangler-Squire's
Calculated Values of Induced Velocity Along
the Rotor Longitudinal Axis
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Advancing Side Retreating Side

U= 0095

Nondimensional Blade Radius

Figure 6. Comparison of Measured and Mangler-Squire's
Calculated Values of Induced Velocity Along
the Rotor Lateral Axis.

An ellipsoidal coordinate system is utilized in the
solution of the three dimensional Laplace's equation. The

pressure distribution in its general form is given by

P = :E: Pﬂ(v)-qg(in)-{cﬁcos(mw)+ Dﬁsin(mw)} (8)

m,n
m<n

Joglekar and Loewy drop all combinations of m, n in the
equation that result in an even (m + n) because Pz(v) will
be even if (m + n) is even. An even Pz(v) will yield a
nonphysical :pressure distribution. The coefficients for

g, Cg, C%, and D%, are calculated in terms

equation (13), C
of rotor thrust, pitching moment and rolling moment.
Joglekar and Loewy also developed a method of expressing

the coefficients C: and Dg in terms of flapping moments
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experienced by the blades. The induced velocity was sub-

sequently determined by numerical integration. Again we K
note that the induced velocities in the more complex
actuator disc theories are incapable of being represented
by a closed form solution.
2.2 DYNAMIC INFLOW THEORIES

Recent research has demonstrated that the low-frequency §
properties of the helicopter rotor wake can have a signifi-
cant effect on the rotor control power, dynamic response,
and stability. An integral part of this research has been

the development of various inflow models that characterize \

the low-freauency rotor wake. It is thesc¢ theories that we *
categorize as dynamic inflow models. Table 1 is a chrono- ;
logical list of the research and literature that pertain
to the concept of dynamic inflow. The early work, prior

to 1970, will be discussed in a general fashion. The more

recent work will be presented in greater detail so as to

develop the foundations for this research.
2.2.1 Early Work

Amer, reference 44, developed a theory to predict the
pitch and roll damping of a rotor. He disclosed that the
damping decreases with increasing blade pitch. Sissingh (2)
noted that for extreme inflow conditions, uniform momentum
theory did not adequately predict rotor damping when compared
to experimental data. He postulated that this discrepancy

was due to changes in induced velocities caused by transient
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TABLE 1

Dynamic Inflow History

RESEARCHERS YEAR THEORY STEADY UNSTEADY REMARKS
AMER 1948 MOMENTUN x ROTOR DANPING 18 FUNCTION
SISSINGH 1952 MOMENTUM X ROTUR DAMPING FUNCTION OF
INFLOV )
CARPENTER 1953 MOMENTUM X X INTRODUCED APPARENT MASS.
s USED 3 EQS AND 3 UNKNOWNS
PRIDOVICH
LOEWY 1957 VORTEX X x 2 DIMENSIONAL LIFT DEFICIENCY
FUNCTION
REBONT 1960 MOMENTUM X x 2 EQS AND 2 UNKNOWNS DID NOT
CONSTDER FLAPPING
TARARINE 1960 VORTEX % x CINUSOIDAL AND STEP INPUTS.
NEGLECTED APPARENT MASS FOR
DELEST TWO BLADE ROTOR
»ILLER 1962 VORTEX x THREE DIMENSIONAL WAKE GEOMETRY.
STEP INPUT
JoNES 1965 VORTEX X TRIED TO OBTAIN CLOSED PORM
SOLUT10N
SEGEL 1965 VORTEX X RIGID MAKE, TRAILING VORTICES
ONLY. BLADE LOADS
SWUPE 1970 MOMENTUM x EQUIVALENT LOCK NUMBER y#
KUCZYNSKL 9N x x MEASURED MINGELESS ROTOR RESPONSE
&
SISSINGH
ORMISTON 1972 MOMENTUM x pEr1veD [L] anp [L] mvriricAL
3 P!
PETERS VORTEX
crEuS 1973 MOMENTUM x x IDENTIFIED INFLOW GAIN AND
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changes in the rotor thrust. The 1ift distribution and in-
duced velocity were each formulated as a Fourier serics
with the first harmonic sine and cosine terms. It was
reasoned that the 1ift of the rotor varies with azimuth

angle causing corresponding changes in the induced velocity.

Sissingh shows that the induced velocity distribution rc-

sults in an increase in damping in autorotation and a loss

in damping for helicopter flight, especially at higher tip
speed ratios or in climbing flight.

Other researchers reasoned that the time rate of change
of thrust perturbations would affect the magnitude of the
transient changes in the velocity field ¢ the rotor. [Irom ‘
the point of view of the momentum theory, a time interval
must elapse during which the air mass associated with the
rotor is accelerated to its new steady state inflow.
Carpenter and Fridovich (39) measured the response of a
hovering rotor to rapid changes in collective pitch, and

they correlated their experimental data with a modified

momentum theory that they developed. Their experiments 1
disclosed that the time lag between full pitch and full in-

duced velocity was less than one second. They assumed that

the uniform induced velocity of the initial flow fiecld is

analogous to the flow field produced by an impermeable disc

which is moved normal to its plane. The apparent mass of

the fluid associated with an accelerating impermeable disc

was found to be 64 percent of the mass of the fluid in the

—— e A o

»
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circumscribed spherc. A certain part of the transicent
thrust was directly attributable to the acceleration of the
apparent mass which they included in the classical momentum
theory. Rotor thrust was expressed as a function of in-
duced velocity, blade flapping, and the rotor hub vertical
motion. This yielded three equations to be solved simul-
taneously. The inclusion of blade flapping and hub motion,
however, greatly complicated the analysis. Tip loss effects
were included by integration of thrust only up to 97 percent
of the geometric blade radius. Even with the inclusion of

a tip loss, the calculated thrust coefficients were 10 per-
cent greater than the actual measured thrast.

Rebont, in a series of papers (45-47) experimentally
measured the response of a rotor to an increase in collective
pitch during vertical flight. He showed, as did Carpenter,
that the thrust response is highly sensitive to the rate of
change of the collective pitch. Although Rebont's analysis
neglected rotor blade flapping, he used Froude momentum
theory in conjunction with blade-element theory and devcloped
(from the charts of Oliver) induced velocity relations for
descending flight. This resulted in an equation in the form
of a Riccati differential equation which included an apparent
mass term to describe the thrust perturbations. An interest-
ing anomaly was that Rebont had to double Carpenter's
apparent mass term to correlate the experimental data with

his analysis.

R A~ ol -
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Loewy, reference 48, investigated unsteady wake effects
on rotor lift. He developed a two-dimensional, 1lift-
deficiency function that is based on classical nonstationary
flow theory. This theory accounts for both the reduction
in 1lift and the phase shift due to the shed wake. Miller (49)
used a rigid-wake concept to develop a lift-deficiency func-
tion similar to the aspect-ratio effect of finite wing
theory. Miller states that the apparent mass effects are
lost in the lifting-1line approximation, but that they ¢ '
be included separately by increasing the ef.ective moment
of inertia of the blade. Along this same line Jones (50)
develops an actuator-disc theory that takc¢s into account
the shed vorticity in the wake. His model provides a
"closed-form'" solution for the aerodynamic damping in the
vicinity of hover. Jones also shows that the Miller and
Loewy lift-deficiency functions are equal in hover.

Tararine and Delest (51) tried to relate static 1lift to
dynamic 1ift by a mathematical transformation of static

1ift which takes into account the amplitude and phasc modi-
fications. From photographs of smoke trails, they developed
their formula based on the rotor circulation. They neg-
lected the apparent mass for a two-bladed rotor system be-
cause it was small compared to their blade shape parameter.

Segel (52) developed a method (based on Piziali's
classical-wake computer program, references 23 and 24) to

predict the nonperiodic air loads caused by collective
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inputs to a helicopter in forward flight. Piziali's wake
program was modified to yield a temporal and spatial history
of rotor response variables as functions of time-varying
changes in collective pitch. The calculated flapping and
air-load distribution compared favorably with transient

data obtained in wind-tunnel tests of a full-scale hecli-
copter rotor. Segel claimed that the apparent mass approach
of either Carpenter or Rebtont was sufficient to relate the
time-varying total thrust on a blade or rotor to the time
variation of blade pitch. However, the apparent mass method
was not considered suitable for computing the inflow distri-
bution required to determine the blade loadings as a function
of spanwise location, azimuth position, and time. He theo-
rized that it was necessary to compute the inflow caused by

a wake possessing elements of vorticity whose strengths vary
nonperiodically as a direct result of the time-varying change
in collective pitch. The following assumptions were madec by
Segel to simplify the analysis

(1) The rotor blades were assumed to be structurally
rigid with only a flapping degree of freedom.

(2) The hub of the rotor continued to translate in
level, constant speed flight during the short time
interval that collective pitch is varied.

(3) The geometry of the wake was specified a priori;
the transient-wake model employed only trailing

vortex elements.
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(4) No account was taken of the shed vorticity in the i
wake. |
2.2.2 Recent Work |
The majority of the previous work was directed at ob-
taining improved blade loading calculations. The more recent
dynamic inflow theories that have been developed are directed
at improving rotor response and stability calculations.

Shupe (53) follows the previously mentioned work of Sissingh

and notes that perturbations in rotor 1lift (due to either
control inputs or blade dynamics) can create perturbations
in the induced flow which, in turn, create alterations in
the expected 1ift perturbations. Shupe's analysis shows that
for cases in which quasi-steady momentum theory is applicable,

the reduction in expected 1ift can be accounted for by the

use of a reduced (i.e., equivalent) Lock number. The equiv-
alent Lock number is used by Shupe for the calculation of

rotor control derivatives. The equivalent Lock number for

forward flight is expressed as

= Y
v 1 + ao/8u (9)

Sissingh and Kuczynski in a series of reports,
references 54-57, measure the steady-state and frequency-
response characteristics of a variety of hingeless rotors.

Rotor responses were found with respect to collective pitch,

longitudinal and lateral cyclic pitch, and angle of attack
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variations. A wide range of flight conditions was tested, ’
which included high and low advance ratios and lightly and i
heavily loaded rotors. The rotor derivatives were found to l
be more linear at higher 1ift levels and high advance ratios.

It was apparent from these tests that the rotor control power

and damping did not agree with values calculated from the [
classical steady inflow theories. f

Azuma, reference 58, develops a method of calculating

the pitch damping of helicopter rotors utilizing nonuniform
inflow. Azuma notes that classical rotor damping derivatives L

for pitch and roll sometimes result in overestimated values

for the actual rotor damping, specifically for hingeless rotor

-~

systems in hover or low u and Cr forward flight. The theoreti-
cal inaccuracies are assumed to arise from inadequate assump-
tions of the induced flow distribution and the treatment of
pertinent flapwise motion of the blade. A theoretical

method of estimating pitch and roll damping based on the

simple momentum theory is developed by taking into account

the nonuniformity of the induced-flow distribution. The g

ey

nonuniform induced velocity is assumed to have an inclined
é funnel- shape distribution. Experimental tests conducted by

Azuma showed that the pitch damping is still overestimated

e 4 b SO 2P

by his nonuniform inflow theory. Azuma also applies his
"Local Momentum Theory" in reference 40 to the unsteady

aerodynamic problems of the helicopter rotor in the low-

frequency range. In particular, he used his method to
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examine the response of rotor thrust and blade flapping
motion to a sudden change of collective pitch. The theory :
did not consider the additional apparent mass term of air
associated with blade pitching and flapping motion. Thus,
the theory is only applicable to unsteady aerodynamic
problem of the rotor in the range of very low frequencies,
and is not applicable to more rapid changes.
Shipman (59) modified Sadler's free-wake analysis,
references 26 and 27, to determine the wake effects on
the stability and control derivatives for various rotor

systems. The control derivatives were assumed to be changes

in thrust, power required, rolling moment, and pitching
moments at the hub due to perturbations in the blade pitch
settings. In the analysis, the blade-loading and response
are coupled together; and iterations are carried out until
the two are compatible. It was shown that the wake had only
a slight effect on most of the stability and control deriv-

atives for the articulated, single-rotor system. However,

the wake becomes significant in or near hover.

Ormiston and Peters, reference 60, employ a quasi-
steady momentum theory and an extended ecuivalent Lock-
number approach to calculate the control derivatives of a
hingeless rotor in hover and in forward flight. They express
the induced inflow of a rotor by a truncated Fourier series
shown in equation (10), where Ao is the uniform inflow ratio

of momentum theory.
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xi = Ao + X551n¢ + Accosw (10)

They assume a linear relationship between perturbations of
of the inflow components and perturbations of the rotor

thrust and moments.

pr— — r -
rdx 1 __E}Q_ m"ffo — - ?EO“, d?I
0 H(CT/aoj d(CL730) dTCM7a57 ao
d) dXx dx C
dA - e s s L
o HKCT7EET ETCL7adT HZCM7aoi ao
dA dX dx C
da ¢ < ¢ d_N
| ] aiCT7a05 ETCL7§57 H{CM7aoi B ac (11)
— .. -
Equation (11) can be rewritten in matrix notation as

{drx} = [L] {dF} (12)

The column matrices {dF} and {d)} represent perturhations

of the generalized rotor forces and inflow components
respectively, while matrix [L] is the nonuniform induced
inflow matrix. Simple momentum theory is used to develop

an inflow model for hover and forward flight.

1/4 0 0

_ ao )
[L]bover = 7; 0 3/4 0

0 0 -3/4 (13)
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1/2 0 0

= 40 .
[L]forward i 0 3/2 0

flight 0 0 -3/2 (14)

A second method, based on the simple vortex system is also
used to find the L matrix in forward flight. A bourd vortex
is located at the lateral axis with two trailing vortices

extending rearward in the plane of rotation. The results

are
1/2 0 1
- ag¢ -
[L]vortex Y 0 8/3 0
1/2 0 0 (15)

Various combinations of equations (14) and (15) were investi-

gated, and a final form

1/2 0 0
[L] combined = %9 0 -3/2 0 :
1/2 0 0 (16) ;

was found to give the best agreement with experimental data
of references 54-57. However, for the definition of (L] in

equation (16), [L]'1 does not exist as opposed to the [L]

matrices of equation (14) and (15) which have well-behaved
inverses.
The above inflow theory can be incorporated in a

rotor-response progam as follows. The steady-state
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components of the thrust and moment response are expressed
in terms of the control input parameters. This relation is

expressed in matrix notation as

{dF} = [M]{d6} + [N]{dx} (17)

The matrices [M] and [N] are the rotor response partial

derivatives from the generalized harmonic balance method

where
B §(Cy/a0) 8 (Cq/ao) §(Cp/ac) 7]
56 86 86 _
M) G(CL/ao) G(CL/ac) G(CL/ao)
M] = — —
88, 88 58
G(CM/ao) é(CM/ac) o(CM/ao) (18)
Y 8. TTEe T T
| (o] S C _
~ 8(C/a0) 8(Cy/ao0) §(Cy/a0) 7
TN, I L
- §(C; /ac) 5(C; /ao0) §(Cy/a0)
N = —
Sh 2 2
8 (Cyy/ 20) 8(Cy/ac) 8(Cy/ao)
LY TER, T (19)

The physical control inputs {d6} are considered independent

parameters while the inflow components are treated as de-

pendent variables related to the thrust and moment response

of the rotor by equation (11).

Equations (11) and (17) are
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combined to yield the generalized rotor response forces
{dF} = [M']{d6} (20)

The matrix [M'] is comprised of the rotor response partial
derivatives and nonuniform induced inflow. Matrix [M'] is

expressed explicitly as

-1
(M'] = [I - [N][L]] (M] (21)

Ormiston and Peters show that, given both experimental
measurements of the rotor response derivatives [M'] and the
theoretical partial derivatives for the control and inflow
inputs [M] and [L], equation (21) can be manipulated to

yield an empirical inflow matrix [L].
-1 -1
[Lgl = (N] I - [M][M') ] (22)

The empirical model assumes linear but coupled relationships
between the three induced flow distributions (uniform,
side-to-side, and fore-to-aft) and the three loading
conditions (thrust, roll moment, and pitch moment). The
nine coupling derivatives were chosen to give the best fit
of the experimental data of references 54-57. These are
given in Table 2.

From their test data, Ormiston and Peters confirm that
the induced flow perturbations have a large effect on control
derivatives. They also conclude that momentum theory ade-

quately predicts all the response derivatives in hover, and
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TABLE 2

Empirical L-Matrix

Momentum
*element A .1 .2 .3 4 .5 Theory
Lll +0.50 0.50 0.60 0.90 1.40 0.5
L12 +0.30 +0.30 +0.30 +0.30 +0.50 (4]
1-13 0 0 =0.30 =-1.00 =1.65 0
LZI 0 0 0 -0.10 =-0.95 0
L2 -6.60 -6.60 -6.70 -6.90 -7.30 -2.0
L23 +1.35 +1.35 +1.35 +1.60 +2.20 0
1-31 0.55 0.55 0.55 0.55 0.55 0
L32 -1.50 -1.50 -1.70 -1.85 -2.00 0
L” 0 0 0 0 [+} -2.0

*Each entry must be divided by v to give the element of L .

T Ty ST
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adequately predicts some of the forward flight derivatives.
For the other derivatives in forward flight, momentum theory
was found to be inadequate. Using the empirical inflow
matrix [LE]’ the accuracy of the predicted responsces improved
beyond those obtained using the momentum and vortex (L]
matrix. An additional point, not noticed in reference 60 but
mentioned in reference 61, is that [L]'1 for the empirical
model does not exist at the point u = .32,

The nonuniform inflow theory of reference 60 is ex-
tended to include unsteady rotor dynamics in references
62 and 63. In reference 62 an unsteady dynamic rotor hover-
ing wake is modecled as an approximate steady-state wake
with a time lag. The wake model is derived from the hover-
ing unsteady moment of momentum equation. The effect of
the dynamic inflow is shown to be equivalent to replacing
the Lock number by an unsteady equivalent Lock number for

the special case of harmonic inputs.
v* = y/{1 + BYL/8(1 + dwgr)) (23)

The inflow gain L and time constant 1 were selected by
parameter identification to obtain a reasonable fit of the
test data.

The unsteady inflow theory is extended by Peters in
reference 63 to encompass more general inflow models. The

total inflow of the rotor as previously given by equation

(10) is modified to include unsteady effects and a linear




-40-

variation with rotor radius. The unsteady, nonuniform in-
flow is approximated by equation (24).

Mr,y) = 3+ D, ¢ AFsing + A feosylelV (24)

The steady portion of the total inflow X contains contri-
butions from the free steam velocity, V/Qr, and from the
steady induced flow, v, due to rotor thrust. The unsteady

inflow components Ao, As, Ac contain contributions from
v ]

iwy

harmonic plunging zel¥Y, rolling ¢et™¥, and pitching ae ,

of the shaft, as well as contributions from the unstcady
induced flow components Vor Vgs Ve due to perturbations in
rotor thrust and moments. The total induced flow is analo-

gously expressed as

vEooy o+ (v * vsfsinw + vcfcosw)eiww (25)

Where v is the induced flow contribution from the steady
rotor thrust. The blade pitch angle & is expressed in terms

of a steady value 6 and control system perturbations eo, es

and ec as delineated in equation 26.

6 =8+ (6, + B Tsiny + OCiCOSW)elww (26)

With the assumption that the rotor inflow perturbations

A A Ac are small compared with unity, it follows that

o’ s’
the induced flow perturbations v

o* Vs* Ve and control

perturbations 60, es, ec, Z, ¢, a are also small quantities

which results in linear perturbation equations. Peters
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follows previous investigators, i.e. Carpenter, Azuma, Crews
and Hohenemser, and reasons that the apparent mass terms of
a lifting rotor must be written in terms of the reaction
forces (or moments) on an impermeable disc which is instan-
taneously accelerated (or rotated) in still air. The
reactions for an impermeahle disc are obtained from poten-

tial flow-theory in terms of elliptic integrals yielding an

apparent mass and inertia values of

3 16 5

m, = % oR I, = 3% oR (27)

These values for apparent mass and inertia represent 64
percent of the mass and 57 percent of the rotary inertia of
a sphere of air having radius R. The steady induced-flow
equation and the unsteady, induced-flow perturbation

equation are integrated and yield the following results

Cr = 29 Juz FEPY 2vv, + Kméo (28a)
-CL = 1/2vvS + KIvs (28b)
-CM = 1/Zvvc + KIvC (28¢c)

The first term in equation (28a) is the steady thrust term
of the rotor and is used to calculate the steady induced
flow v given A, u and CT' The second two terms in

equation (28a) are the thrust perturbation components, while

equations (28h) and (28c) reprecsent the pitch and rolling

»

e

T

7Y R .2
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moment perturbation equations. The parameters Km and KI are,
respectively, the nondimensional apparent mass and inertia

terms of an impermeable disc and have values of

MA 8
K = = — = (0,8488 (29a)
n anS 3n
K., = AL 16 0.1132 (29b)
I onRg 45T :

The time constants associated with the induced flow model

utilized in equation (28) are

K
= N =
Tn = 3v 0.4244/v (30a)
2KI
TI = '—V— = 0.2264/\/ (SOh)

and the flow parameter,v , is given by

} i _ 1/2
voe (ud e ihos yalt s ih (31)

A harmonic balance yields the resulting complex nonuniform

induced flow matrix, [L], for unsteady momentum theory.

~  oa .
v + iw 0 0
m
= — -oa e —
[L(X)] 0 /T + K{1u 0
-oa
0 0 L
i v]2 '+ K3 |
{32)
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An unsteady empirical model analogous to that of refcrence
60, is developed in reference 63. The empirical flow model
of reference 60, [LEL is utilized for the quasi-steady
portion of the induced flow law, while the apparent mass
terms rendered from the potential flow theory, are used for
the unsteady portion of the induced flow. The resulting

empirical unsteady inflow matrix is written below.

_ = -1
- -
Km 0 0
(LK) o 0 -K; 0] iw
E = I ga + [KE]
-0 0 -K]‘ _1 J

= [Lg] [FK\] a5 [Lgl + I]
(33)

1. It should be noted that in order to

Where [Kp] = [LE]—
obtain the empirical unsteady L-matrix, the steady empiri-
cal LE matrix need not be invertible. Thus, [LE(K)] exists
at y = .32, despite the singularity of LE. By using a
single harmonic balance of the root moment equation, Peters

also develops a complex equivalent Lock number y* as another

method of accounting for the unsteady induced flow.

<r<
»

S [ - . (34)
1+ 8v/oca + lbﬁiiw/oa

It is readily scen from the above equation, that one effect
of induced flow perturbations is to decrease the effective

Lock number, (i.c. to decrease the aerodynamic effectiveness).




The dynamic inflow model is used successfully by Ormiston
in conjunction with an eigen analysis for the case of blade
flapping dynamics of a hovering rotor in reference 64.
Ormiston further went on to show in this reference that the

dynamic-inflow effects change the transient bhehavior of rotor

flapping dynamics at low collective pitch, where rotor thrust
and the mean inflow are small. Peters and Gaonkar in refer-
ences 61 and 65 examine the effects of the dynamic inflow
model on the flap-lag‘dynamic stability of a helicopter
rotor. They find that, when lead-lag motions are included,

the equivalent lock number must be augmented by an equivalent

drag coefficient, Cgo*.

Banerjee, Crews, and Hohenemser (66-67) uscd paramecter
identification from transient rotor responsc tests teo dcetermine
the dynamic inflow characteristics without performing flow
measurements. Two different analytical inflow models were
used. The first was the equivalent Lock number and the
second was the [L] matrix from unsteady momentum inflow.
They had difficulty in identifying the (1,1) term of the
(L] maxtrix and the K, term. Both of these terms are
associated with the average induced velocity, Vo - Their
results showed that at low advance ratios, the [I]
matrix model gives a better prediction of the flapping re-
sponse than does the y* model.

The synopsis of the inflow theories shows that the

theories range from the simplc static momentum theory to
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the more complex wake-vortex and dynamic, nonuniform-inflow
theories. The most promising static thcories are the com-
plex actuator theories of Mangler-Squire and Joglekar-Loewy.
The static actuator theories provide good correlation of the
mean velocity inflow both along the longitudinal and lateral
axis. The dynamic inflow models that are based on momentum
theory are shown to correlate well with experimental data for
the hover condition. Momentum theory does not satisfactorily
model dynamic inflow in forward flight. The various inflow
theories: momentum, simple vortex, flat vortex wake, local
momentum, Goldstein Classical Wake, Piziali Rigid Wake, Freec
Wake, Prescribe-Wake and Mangler-Squire Actuator Disc con-
tain the necessary components to model the dynamic inflow of
hingeless rotors. However, the primary utilization of these
diverse inflow theories has been in the realm of rotor-
performance verification and prediction (and a subsequent
coupling with computer programs for calculating detailed
rotor blade loads). To date, the majority of these inflow
theories have not been exercised to determine the overall
dynamic inflow characteristics of a rotor. Ormiston (18),
Segel (52), and Shipman (59) attempt somewhat to determine
the overall dynamic inflow characteristics, but fall short
of this goal., 1In all cases, the inclusion of blade dynamics

over-complicate the problem and mask the true objective of

the dynamic inflow theory. The purpose of this research is to

manipulate various inflow thcories, without inclusion of
associated blade dynamics, to obtain the purce dynamic inflow

characteristics.

i
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3. MATHEMATICAL FORMULATION OF INFLOW MODELS

Two distinct inflow models are utilized to obtain the
dynamic inflow characteristics of a helicopter rotor. The
first inflow theory considered is the actuator-disc theory
developed by Mangler-Squire and extended by Joglekar-Locwy.
The second aspect of the research utilizes the prescribed-
vortex, wake-inflow computer program of Piziali-Landgrebe.

These two inflow theories are vastly different in their
basic assumptions and solution procedures. However, both
of the models are capable of being extended to provide
dynamic inflow characteristics oif a rotor. The use of two
diverse theories allows a comparison of the various
assumptions of each theory, and their effects on dynamic
inflow.

The mathematical modifications to the inflow theories
are discussed in detail in this section. The first theory
to be considered is the actuator-disc theory which is
extended to model steady and unsteady aerodynamics.

3.1 ACTUATOR-DISC THEORY
3.1.1 Steady Aerodynamics

The actuator disc theory of Mangler-Squire is re-
structured along the lines of Peters' dynamic-inflow theory.
The general expression for the lift distribution of Mangler-

Squire is given by equation (8). We have previously dis-

cussed the general criteria for the selection of the constants

ey
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Cg and Dg. By choosing the constants wisely, one is able to ,
model any rotor thrust condition. The method utilized to

choose the constants CE and DE for this proposed research
will now be described in more detail.
Equation (35) is the expanded form of the pressure %5
di- ribution, equation (8), and is utilized in the actuator-
disc research.
¢ = ;%z = PT(v)Q](in)C] + PS(V)QS(in)cC

1 1,. - 1
+ PZ(V)QZ(ln)[Cécosw + Dysiny] L
+ Pi(v)Qi(in)[Cﬁcosw + Disinw]
+ p2)Qi(in) [ccos2v + Disinzy] (35)

The nondimensional pressure distribution, ¢, is expressed in
terms of an ellipsoidal coordinate system. The ellipsoidal
coordinate system allows development of a pressure distri-

bution that solves the Laplace equation with a pressure

discontinuity at a circular disc. It will be shown that this

pressure distribution can be used to yield the induced
velocity.

Besides the ellipsoidal coordinate system, we define
both the cartesian coordinate system X,Y,Z, which is parallecl
to the forward velocity streamlines, and the X',Y',Z'

coordinate system, which is located on the rotor disc. TFollow-

ing the convention of Mangler and Squire, the coordinate
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system is nondimensionalized on the rotor blade or disc
radius. Appendix 7.1 contains all the coordinate system

transformations as well as the figures that depict the

relations between the coordinate systems.

The constants CE and Dﬂ are obtained by judicious

application of physical boundary conditions concernin.. tin
lift on the rotor disc. Over the area of the rotor disc, 4

the 1ift density will correspond to the difference in the

pressure p just below the disc surface (n=0, v<0) and ahove :
the disc (n=0, v>0). Thus, the equation for the thrust of

the rotor disc is

T = /pdA -ﬁvdA (36)
A A

lower upper
The pressure p is given in general form by equation (8) and

when combined with equation (36) yields

2m R .
T= 2 : pVZ[ (Cmcosmw + Dmsinmw)dw] Pm(v)Qm(in)rdr
— n n n n
! o]

m<n o
(lower - upper) (57)

It should be noted that the thrust is obtained by integrating
on the disc surface; consequently, n=0 in equation (37). In
equation (37), the terms Pz(v) and Q:(in) are Legendre
Polynomials of the "first'" and ''second" kind vespectively.
Appendix 7.2 list the Legendre polynomials used in this scg-

ment of the research and some of their associated properties.
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This appendix also contains plots of the Pg(v) distrihutions
on the rotor disc and the Qg(in) variations with n. The
thrust equation in its present form can be integrated in the
azimuthal direction. We note that cosmy and sinmy, when
integrated over the intecrval 0 to 2n, arc zero for all valuces
of m except m=0. This yiclds zucg as the only non-zcero

term. Our equation for thrust is now written as

R
T = Z pv22ncg Qﬁ(iO)/ PO (v)rdr (38)
(o}

n
(lower - upper)

The Q: (i0) terms can be pulled outside the integral because
n=0 on the rotor disc. The Q:(in) are constants on the rotor
disc, and their values are given in Appendix 7.2. Prior to
the final integration of equation (38), the variable of
integration rdr has to be expressed in terms of v in the
ellipsoidal coordinate system. This change in variable is
given in Appendix 7.1 by equation 7.1.7. Thus the thrust

is written as
+1

e . vl 2 z 0A0 (- o .
T pV©27mR chn(10) J{ Pn(v)vdv (39)

n -1

Noting that P?(v) = v and using the orthogonality relations
given in Appendix 7.2, only the (n=1) term will have a non-
vanishing integral, which yields for the final valuc of thrust

2 2

T = 4/3nR%pV

o
Cl (40)
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Equation (40) is solved for the constant C? in terms of I
standard thrust coefficient CT and the definition of v cm- i
ployed by Peters in reference 63. (v = free stream velocity/ !
QR for this case.)

c‘l’ (41)

[}
(7))
~
Al

Thus, using the combination m=0 and n=1 will result in a
steady thrust from the pressure field of equation (35).

This thrust is manifested by the term Pg(v) which vanishes

as the edge of the rotor disc, thus causing the thrust to
vanish at the edge of the disc. To better represent the
lift distribution of an actual helicopter rotor, the 1lift
should also vanish at the center of the disc (i.e., the
rotor hub). This is readily accomplished by including other
terms in the pressure distribution which will have no effect
on the total lift as calculated by equation (39), but which
will alter the radial thrust distribution. The Legendre
Polynomials of the first kind (with m=0 and n=even integers)
do not vanish at the edge of the rotor disc and consequently
are not used, only the polynomials with n equal to an odd
integer are used. This ensures that the hub thrust density
is zero. If we include the term m=0, n=3 in the pressure
distribution in order to ensure that the pressure distribution

will be zero at the hub, equation (35) yields
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C;P?(O)Qg(iO) + ¢PG(0)Q3(i0) = 0 (42)

Using the values for the Legendre Polynomials given in

-

Appendix 7.2, the above equation yields the hub density

correction factor Cg

c§ = 3/2c§ (43) 5

0
3

] Combining equations (41) and (43) allows us to relate the Y

hub density correction factor to the thrust coefficient

CT and the induced flow parameter v. ¥

o _ T b
C; = 9/8— (44)
v
The effects of the hub correction factor on the rotor thrust E

distribution can be seen by examining the figures of Appendix
7.2 and 7.3. In Appendix 7.3 all the loading distributions
investigated are described in more detail and displayed
pictorially.

Using the above procedure, we can evaluate the constant

D% by employing the equation for the rolling moment of the

rotor disc
L=-Tr sin ¢. (45)

Expressing the thrust by equation (37) allows us to rewrite

DR ey Tt e g ey

the equation for the rolling moment as

3
|
k




R 2
La .oVl 2 , Qg(iO)/ / p'r‘l‘(v)(cﬁcosmwn'r‘l‘sinmw)
m,n
m<n (o] (o]
(-rsiny)rdrdy (46)

The harmonic functions in equation (46), sinycosm¢ and
sinysinmy, integrated over the interval 0 to 2n, will be
zero for all values of m except m=1 which yields the value
nDi. Changing the variable of integration of equation (46)
from rzdr to the value given by equation (7.1.7) of Appendix

7.1 allows us to write the equation for the rolling moment

as

1
—
L = -pvZaR3 L plal(io) / O ‘/1-\)7 dv (47)
L

n

Using the orthogonal relationship for Legendre Polynomials
of the first kind will make equation (47) zero for all
values of n except for n=1. When n=1 the rolling moment

equation can be written as

L = 8/5 inRsoVZDé (48)

Using the definition of rolling moment coefficient, CL’

equation (48) can be solved for the constant Dé.

c
D} = - 5/8 i ;’5 (49)

o

Correspondingly, the pitching moment equation can

be written as




-53-
M= -Trr cos ¢ (50)

Which, when combined with the thrust given by equation (37)

yields
R 2nm
M= -pv? § :Qg(iO)f / P';:(v)(cr:cosmw + Dgsinmw)
m,n [ 4
m<n o] (o]
(-rcosy)rdrdy {51)

Analogous to the rolling moment equation, the harmonic

functions in equation (51) will be zero over the integration
interval for all values of m except m=1 which yields nCi.
Changing the variable of integration from dr to dv allows

us to write the equation for the pitching moment as

+

1
M = -oVvZnR3 Z clalcio / NOR Jl-vz dv (52)
n <1

Using the same technique employed on equation (47) the

resulting pitching moment is

3 201

M= 8/51 mRpV CZ (53)
We then solve for the constant C%
C
1 _ . M
CZ = 5/8 i ;7 (54)

Up to this point, the evaluation of the constants C?,
1

Cg, C2 and D% have followed the theory of Mangler and Squire.

il
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The constants Cg, C%, and D% respectively represent thc total

thrust, pitching moment, and rolling moment experienced by 4a
helicopter rotor under the pressure distribution of equation
(8). The constant Cg, hub thrust correction factor, ensures

that the thrust is zern> at the hub.

1

The determination uf the constants C4, Di, C2 2

3 3
for this research program will be different from the theory

and D

employed by Joglekar-Loewy in which they were taken as :zero.
The constants Ci and Di will be utilized to enforce the
physical boundary condition that the pitching and rolling
moment slopes at the hub are zero. This technique allows

a logical selection of the constants as well as a direct
measure of the effect on induced flow distribution.

The hub moment correction factors, Ci and Di, are
determined by enforcing the boundary condition that the
slope of the pitching and rolling forces are zero at the
hub. This boundary condition is mathematically expressed

as

d¢ ‘ r=0 _ _ 1-v2 do
n=0

dr v dv

N

1
0 =0 (55)

\Y
n
Using equation (55) and considering only those terms of
the pressure distribution, equation (35), which contri-
bute to the pitching moment, yield zero values except for

the following terms




VR AL 7 apl(v)
clolim Moy T2 clol (im (Vi) T4 -
v=1l v=1
n=0 r|=0
(56)

Solving equation (56) for the unknown constant Ci we ohtain

1

1
C, = 9/40 C, (57)

Using the value for C% given by equation (54) allows us to
express C: in terms of the pitching moment coefficient and
induced velocity flow parameter v

cl = . 9764 i Sy (58)
4 1 2

The rolling moment hub correction factor Di is determined
using equations (35) and (55) with their rolling moment
terms in the above procedure. For purposes of brevity only
the result will be shown. Thus, the rolling moment hub

correction factor is

CL

D, = - 9/64 i i (59)
v

1
4

This leaves two constants for the pressure distribution
2 2 ‘

of equation (35), C3 and D3,which have not yet been determined.

These constants will be used to represent a second harmonic
of the pressure distribution. The two-per-rev load is

defined as

TS

\
1
{
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2

LZ = - T r” sin 2 ¢ (60)

When the value of the thrust given by equation (37) is
substituted into equation (60) the two-per-rev rolling

moment can be written as

R 2m
L, = -pVZ Z Q':(iO) [f Pg(v)(c'gcosmw + D:sinmu/)
m,n .
men o Yo
(-r%sin2y)rdrdy (61)

The harmonic functions of equation (61) will be zero over
the integration interval of 0 to 2n for all values of m,
2 2

sin“2y when

except when m=2. For this case the term Dn

integrated over the interval becomes nnﬁ. Changing the
variable of integration from r3dr to the value given by
equation (7.1.7) of Appendix 7.1 allows us to write the

equation for the 2/rev load as

1
L. = -pvZR%n qu(iomﬁ/ PZ(v) (1-v%)vdv (62)
n
4

(%]

The orthogonal relationship of the Legendre Polynomials
results in n=3 being the only non-zero term. When n=3 the

2p rolling moment is

2_,4.2

mR D3 (63)

Lz = 128/7 oV
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The definition for a 2-per-revolution pressure coefficicent,

CZL’ and the inflow parameter, v, can be used to yield the

constant Dg.

C,

\Y%

(o

Dz = 7/128 (64)

N|

2

3
9

Repeating the above procedure, the constant Cg can he

determined in terms of the second harmonic pitching moment,

CZM’ and the inflow parameter, v.

C

2 _ M
C3 = 7/128 —;7 (05)

All the constants pertaining to the pressure distribution
given by equation (35) have now been defined. Up to thix
point, we have only discussed the rotor pressure distri-
bution itself. We will now discuss how the pressure distri-
bution is used to solve for the induced velocities of the
rotor.

Mangler, in reference 42, utilizes the fact that the
pressure distribution, cquation (8), is a solution of the
Laplace equation. Consequently, the nondimensional induced
velocity caused by the prescribed nondimensional pressurc

distribution can be determined from the following equation

X
(Y, = v [ (5,Y,de 1= XY,z (66)
+ oo
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The above equation yields the induced velocity components

at the field point (X,Y,Z). It should be noted that equation
(66) determines the components of the induced velocity of

the rotor disc along the X, Y, and Z axis of the wind
coordinate system.

The dynamic inflow thecorics were developed and
structured around the premise that the dynamic inflow components
normal to the disc are of primary interest. In view of this,
the conversion of the Mangler actuator theory to a dynamic
inflow theory requires the determination of the induced
velocity normal to the disc. This implies that we need only
determine the induced velocity in the Z' direciton of the
disc coordinates, which is readily accomplished by rewrit-
ing equation (66) as

o«

W(X' ,Y',O) = 'V/ ¢,Z.(7',7’,7')d£ (()7)
(o]

where X' = X' + gcosa, Y' Y', 7' =-f£sina, and

where ¢’Z' is the partial derivative of the pressure ficld
with respect to the Z' axis of the disc coordinate system.
The variable £ in equation (67) is a dummy variable of
integration in the X direction. Thus, the integration is
performed from the disc to the infinite field along the

streamline parallel to the X axis in the wind system.

Figure 7.1.3 of Appendix 7.1 depicts the integration
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technique. To find 0551 We have to employ the chain rule
because the pressure distribution of equation (8) is given
in terms of the ellipsoidal coordinate system.

i
TTRE SR S SRR (68)
S

where ¢? represents the ellipsoidal coordinate system.

In expanded form equation (68) can be written as

3¢ _ 3v_ . 3¢ , 3n 3¢ , v 3¢ (69)
YA EYA av  9Z' T dn 3LV Iy
oV an oy . .
The terms ==+, =%+, and Z=5+ are determined by taking the
92 32 0z
the derivative of the ellipsoidal coordinate transformations

listed in Appendix 7.1. The term %%T is zero, and thus need

not be considered.

2
v _ -n(1-v
FYAl ;7—:—7—1
n (70 a-b)
2
on . -v(1+n7)
[)
FY4 v2+n2

The terms %% and %% are obtained by taking the partial
derivative of the pressure distribution that we are utili-
zing for this research, equation (35). These terms can be
determined by taking the derivative term by term or using
the recursive formula for the derivatives given in Appendix

7.2. The induced velocity normal to disc (i.e., in the 2'

= iasto
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direction) is

= 2 2
- v vy = . -n(1-v7) . 3¢ -v(l+n”) 3¢
WX, Y',2") "/ vt 77 3n |9
o vV +n v +n

(71)
where v and n are functions of ¢. This equation is
extremely complex and is evaluated by a computer progran
that is described in the next scction.

A specialization of equation (71) can be made for the
condition of a = 90° (axial flow). For such a condition

Z and £ are parallel; and equation (71) reduces to

wlY! ' ' = - 2
w(X',Y',z2") vel Lo (72)

Thus, the induced flow may be found directly from thec non-

'
dimensional pressure distribution ¢ with no integration for
the axial flow case. Another specialization of equation
{71) is the casc of edgewise flow, o = 0°. Here, f is

parallel to the X axis, and a portion of the intcgration is

on the disc.

v

|

wW(X',Y',z') = f : g¢ dx (73)
00 \):0
X
. 1 30
vaV'an dx
7 rn=0
\h-y

Equations (72) and (73) vield the induced velocitics for

I LTS
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a = 90° and o« = 0° and are used as a check on the induccd
velocity calculated by the computer program.
The induced flow perturbation equation that is used in

the actuator disc research is 1

- . - =2 . =2
V= Vv_ + v Trsiny + v_rc + Vv, T 2y + v, T s 2t
o s Y Cr osy 2s sinly 2¢ cosly

(74)

The induced flow perturbations will be obtained by inte-

grating the induced velocity w over the disc area. For our

purposes the induced low perturbations are defined as

2n 1
= 1 = = 4%
vo—Fffwrdrdw
o o]
2 1
_ 4 - =2 . -
Vs'?_[ f w r° sinydr dy
o (o]
2mn 1
_ 4 = =2 —
vc—?f/wr cosyp dr d ¢
(o] (o]
Zn 1
- 6 - =3 . —
st-Ff fwr sin2y dr d y
o o]
2n 1
= 6 = =3 = N
vZC—?.é '{wr cos2y dr d ¢ (75 a-e)

Due to the symmetries of the problem, only one half of

the induced velocity field need be calculated for a given

coefficient. For example, for all of the C coefficients




o 0 ~1 .1 .2
(Clics’CZ)C4’C3)

<
]
]
ETLN)
O\
—
=)

(o]
m 1
[ [ F
v.o= = w
c T A
m ]
) =!‘.fo‘;
2¢C s b o

For all the D coefficients (D;,D

These flows, calculated

into an L matrix

r” cosy dr d y (75 a,c,c)

1

2
4’D3)

T2 siny dF d ¢

4o

~

-
€|

[y

il 1
- _ﬁ_z_/' f W TS sin2y dT d ¢ (75 b,d)
(o] [8)

for each coefficient, can be formed




B o
€
o}
Cs
- - |
Vo 1D2
|
Vg _ 1D4 _ ) \

S = 1 = o/
\/C \" L j('é = V[L] .CD; ( (’)
\Y)

2s iC1
ch 4
L J DZ
3
2
C3

= -

Other definitions of v's are also possible. The above arc
chosen, however, on the basis of ease of implementation,
mathematical consistency, and physical significance.

The {CD} cocfficients can be related to the 1ift distri-

bution by the formulas previously obtained.

cg [ 3/4 0 0 0 0

cs 9/8 0 0 0 o |
iD% 0 5/8 0 0 0 CT-|
ipl 0 9/64 0 0 0 ‘L
icg| V| o 0 s/8 0 0 C,.
. ~1 C-
iCy 0 0 9/64 0 o || ™

D§ 0 0 0 -7/128 0

2

C 0 0 0 0 -7/128
) _ i

}
)
|
i
)
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The [L] matrix, including the hub correction factors

1

0
(Cs:n4s

Ci) is obhtained by combining equations (70) and (77).
_ 1 .+
(L] = ¢ (L1 (T} (78)

The [LS] matrix without correction factors (i.e., for a

different radial distribution) is ohtained by setting the

C%,Di,ci rows of [T] to zero. The first three rows and

columns of [LS] correspond to the classical [LS] matrix.

1 with the first three rows and columns of

Comparing [Ls]'
-1
(Lol

1ift distribution on induced flow.

will provide a measure of the effect of azimuthal

3.1.2 Unsteady Aerodynamics

Part of the rescarch was concerned with extending the
steady actuatrr-disc theory of Mangler to the unsteady casec.
This represents a significant modification to the steady
inflow theory, and will be developed in detail in this
section. The generél momentum equation for incompressible
fluid flow is

9

1
Gf— + qui’j = _E pai 1,) = 1a2y3 (79)

where the terminology q. means the partial derivative of

i,]
qa with respect to j. The continuity equation can be

written as

=0 i=1,2,3 (80)




-65-

Equation (79) can be rewritten for the particular geometry of
the actuator disc problem in conjunction with linearization.
This equation, as originally given by Mangler can be written

as
aai

7T

-%p. (81)

Fs 45 ,x Ji

The above momentum equation can be nondimensionalized with
respect to time by making use of the following definitions

and equations.

yo= Tt
d
(*) = v
y = JFS
‘R (82 a-1)
2 P
=732
oR°R
g =9
97 R
x = X/R
The nondimensional linearized momentum equation is
* ~
—_ - . = - . 83
g ;  V,x T (83)

The above equation will be solved by two different methods.

In the first method, we assume that the pressure ficld can be

expressed as mutually in-phase simplec harmonic motion. This

will be referred to as '"superposition of velocities". In the
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second method, we assume that the inflow distribution varics
as & simple harmonic function. This will be referrved to as
; "supoerposition of pressures'.
In the superposition of velocities method, all the

components of pressurc are assumed to be in-phase.

jml,b

2=3e (84)

where the term ¢ is assumed to be a real function. Equation
(84) will be used in conjunction with equation (83) to cal-
culate the induced velocities that result {rom the pressurc
fluctuations. The velocity field is represented by the

complex expression

q=qel

where g = w + ju (85)

This is a superposition of the complex velocity field.
Substituting equations (84) and (85) into equation (83) and
performing the indicated operations results in the following

equations

(wiwj-uiw)erw v[wi’x+jui’x]e3ww = - $ierw (86)

Dividing both sides of equation (86) by eJ9¥ ang segregating
the real and imaginary components allows us to write the

following two equations

- it s AL P e e
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REAL COMPONENTS wu, + VW, =9 .
i i,x 1

INAGTNARY COMPONENTS wW. - Vvu, = 0 (87 a-bh)

We let the derivatives with respect to the X axis, or wind

axis, be noted by a prime (q,i = q') and solve equation

(87b).

_ v
W, = -u—)ul
u., = % w. (88 a-b)

Substituting equations (88 a-b) into equation (87a) yields

two equations

€
(=
+
<
c
ot -
n

€
©

2 2
w. + w!'!
oWy vowy

1
<
o

(89 a-b)

Taking the derivative of equations (89 a-b) with respect

to i and employing the continuity equation, (80), yields

=0 (90)

Thus, we note that, for the complex frequency response
problem, the pressure distribution in equation (84) must
satisfy the Laplace equation, i.e. (90). This is very signif-
icant in that it allows the use of Mangler's static pressure

distribution for the unsteady theory, since equations (8) and
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(35) are solutions to the Laplace equation. It is also
assumed that the induced velocity is zero at a larpe
distance from the rotor disc, that is to say wj(m) =
ui(m) = 0.

A special case of equation (87) exists when the

actuator-disc is in still air. This means v=0 and

equation 87a reduces to

(91)

Thus, the complex or out-of-phase axial induced velocity

for this case can be determined by taking the derivatives

of the pressure field. No integration is required.

__l_
u == ¢ (92)

(93)

This special case is extremely useful for checking the

unsteady calculations of the computer program. Equations
(89a-b) will be solved by taking the Laplace transform of
the equations. Thus, the equations can be written in the

Laplace domain as




1
u.(s) = v - el $,5 (s) (94 a-b)
1 sz+wz/v2 1
1
w.(s) = v - > « Bys(s)
i szwz/vz i

Taking the inverse Laplace transform of equations (96 a-b)
will yield the real and imaginary part of the induced
velocity, uy and LA resepctively. Before performing the
inverse Laplace transform we note that the inverse Laplace
transform of ¢ (s) will yield the Mangler pressure distri-
bution, ¢,i. We also make usc of the Laplace transform
of the sine and cosine functions, which are

-1
/v
t =L {- 0—27\—,-2-}

S +w

sin

<IE

Cos

1 (95 a-b)
t ‘1 (=53}

s“+w®/v

<le

Employing the convolution integral, we can readily determine

the induced velocity components as

x'
w,(x',y',2') = Zr $’i(€) cos [(%)(X'-E)]ds

<

x' (96 a-b)
[ ¢4 sin (-4

<=

ui(x"y')z') =

where £ is defined along the x axis with £=0 at the plane
of the rotor disc.
We define a reduced frequency K based on air speed,

not ~ip speed, as w/v. This allows us to write the normal

T i,

e
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velocity components at the disc as

W, = 1 J[E , cos (Kg)dg (in-phase)
v s 2
L o] (97 a-b) j
u, =% Jf$‘z. sin (KE)dE  (out-of-phase) ;

Several interesting aspects of these equations should be
pointed out. First, these are identical to the integrals

in the steady aerodynamic theory, equation (67), except for

the weighting functions that have been added. Second,
these weighting functions, cos(K&) and sin(K£), have direct
physical interpretation. They can be associated with an
oscillatory pressure field that varies as a wave traveling
at velocity v and frequency w. Third, for w=0, the above
formulas reduce to equation (67). Fourth, the effect of
unsteadiness is only a function of K. Thus, for a given

rotor angle-of-attack, a single sweep of K will suffice

SR TR T TP WO Yl T 3ot

to give the behavior for all w,v combinations. Lastly, the
similarity of equations for the steady and unsteady induced
velocities allows the utilization of the same numerical
integration technique.

The second assumption used with equation (83) is called
the superposition of pressures. In this method it is assumed

that the inflow distribution varies harmonically but is in-

phase. Thus, the induced velocities are expressed as

q; = a; ¥ (98)
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where q is assumed to be a real number. The pressure distri-

bution will be represented by the following complex cxpression

P, = (A, + B j) eIV (99)

hence the name superposition of pressures., Substituting

equations (98) and (99) into the momentum equation, (83),

and performing the indicated operations yields

jwai elwV . vai x WV o . (A + B j)erw

’ 0,i 0,i (100)

Dividing both sides of equation (100) by ejww and segre-

gating the real and imaginary components allows us to write

the following two equations.

REAL COMPONENTS vai x = A° i
? ’
(10la-b)

IMAGINARY COMPONENTS wai = - Bo i
’

Taking the derivative of equations (10la-b) with respect to

TR AP T " g, . TS graneer TRy e

i and employing the continuity equation (80) yields

(102a-b)

Thus, both pressure functions (A° and Bo) can be represented
by the Mangler-Squire series seen earlier. (They both solve
the same equations and boundary conditions.) It follows

directly, under the assumption of in-phase velocities, that
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the relationship between these velocities and the in-phase

pressure (Ao) is identical to the existing Mangler-Squire |

theory, equation (10la). The out-of-phase pressure distri-

bution (Bo) is then given by equation (101b) which states
that the velocity simply equals -1/w times the pressure i
(with no integration from 0 - « as previously required).
The implications of equation (102) are very important. It d
implies that the pressure from q and § (i.e., A0 and BO)

can be superimposed. This has been an underlying assumption

in all dynamic inflow work to date. Furthermore, since

gy

Ei = - 1/w B the velocity field is independent of either

0,1’
the magnitude or direction of the free-stream velocity
(another assumption of previous work in dynamic inflow).

It is reasonable to consider the correlation between |

the two above theories (pressure in-phase, velocity in- i

phase) and the true solution. One would expect the actual

case to have neither in-phase pressure nor velocity. Thus,
a comparison of results under the two assumptions can be
used to obtain reasonable bounds on the effect of unstead-
iness.

In the superposition of velocities method, we assume
that the pressure field is in-phase with itself. The

general form of the equation can be written as

{v} = [L]{F} + [Q]{F) (103)
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Where the column matrix {v} is the induced velocity pertur-
bations Vor Vgr Vo The generalized rotor response vector
{F} consists C, C;, Cy, while {F} contains the unsteady
terms. The [L] matrix will contain the real part of the in-
duced inflow, while the [Q] matrix will contain the imaginary

part of the induced inflow determined by method one. Using

our assumed pressure distribution we can solve equation

(103) for {F}.

-1
{F} = [[L] + [Qliw] {v} (104)
We define a complex [L] matrix as [L(K)]. Equation (104)
can then be written as
-1
{F} = [L(K)] {v} (105)
In the superposition of pressure method we assume that
the induced velocities are in-phase and we determine the
resulting complex pressure distribution. The general form
of the equation is
. -1
(MI{v} + [L] {v} = {F} (106)
Substituting the assumed induced velocity {v} = {V}eJ®V

in equation (106) allows us to rewrite the equation as
-1 _
[[L] + [M]iw]) {V} = {F} (107)

Thus, the unsteady aerodyramic research is concerned with

the equivalence of equations (105) and (107) i.e.
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R 1 .
(L] + [Qliw] 2 (L] + [M] iw
(108 a-h)
” -1 -1
(L] + [Qliw = [[L] + [M]iw]
where [L(K)] = [L] + [Q)iw

3.2 PRESCRIBED-WAKE VORTEX THEORY

The United Technologies Research Center's Prescribed
Wake program was used to investigate the effects of a
finite number of blades and wake geometry on the dynamic
inflow [L] matrix. This program was developed by Landgrebe
(68) and is based on the lifting line analysis of Piziali
(23,24). The program originally was developed to calculate
the induced velocity distribution of a rotor, for a given
wake geometry. The program is capable of generating a
classical wake which is based on the momentum induced
velocity, or a wake geometry can be inputed from prescribed
wake data. The program has a capability of modeling the
tip vortex roll up by combining a designated number of
vortices after a specified number of azimuth positions.

The program had to be modified to calculate the aero-
dynamic loading coefficients, {F}, as previously defined in
the dynamic inflow section. The formulas for the aero-
dynamic loading coefficients are given below. In the
formulas, &' is the 1ift per blade radial station, b is the

number of rotor blades, and N is the number of rotor azimuth
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positions used in the calculations.

N1
bZ_[ e (i)dr
i=1
4

2 R

Nep 1

1
b ;f 2'(i)r sinydr
_ i=1"

L Norma?r®

1
b tf £'(i)r cosy dr
i=l"

Nenn inis

(109 a-c¢)

C

M

The induced flow perturbations Vs Vg and V. are
obtained by integrating the axial induced velocity over
the disc. The integration of equation (75 a-c) had to bhc
included in the program.

To uniquely determine the 3x3 [L] matrix, which has
9 unknowns, requires three perturbations of the rotor inputs,

(e 6 ec) from the trim condition. Thus, upon trimming

o’ "s’
the rotor for a given flight condition equations (75) and

(109) are used to obtain

\)0
Vs = v} rIM
Ve JTRIM
(110)
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The rotor inputs are in turn perturbed for three separate

cases, which yields three distinct {v} and {F} matrices.

{V}l i=1,3 (112)
{F},

However, we are interested in the {v} and {F} as a result
of the input perturbations, so we define a {Vv} and {F} which

result from the perturbations

(vl = vl - Oy
(113)

We can now write the [L] matrix as

A

\Y
(o]

Ve (1) v (2) v (3)]=

. 1
(1) 30(2) 30(3) ri(l,l) L{1,2) L(1,3) FCT(I) CT(Z) ET(S

<l

L(2,1) L(2,2) L(2,3) CL(l) EL(Z) EL(S

Uc(l) GC(Z) UC(SL L(3,1) L(3,2) L(S,SU EM(I) fM(Z) EM(S
(114)

or [V = L{L)(F)

Upon inverting [F) and post-multiplying by it, we obtain the

[L] matrix we desire.
-1
[L} = v[V][F] (115)

It should be noted, that for the above solution technique

of the [L] matrix, the [F) matrix must be non-singular. Thus

independent loading conditions must be prescribed.
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4. DEVELOPMENT OF COMPUTER MODELS

The computer programs utilized in this research will
be discussed in this section. Two large Fortran computer
programs were utilized in the bulk of the research. One of
the programs was written and developed as a specific part |

of this research. This program was used in the actuator-

disc calculations of the steady and unsteady [L] matrices.
The second program was the UTRC prescribed wake computer
program which was modified to calculate the steady dynamic
inflow [L] matrix.
4.1 ACTUATOR-DISC PROGRAM
A Fortran computer program was written to numerically ‘
integrate equation (71) in order to obtain the induced
velocities at the rotor disc. As this program is quite
lengthy (over 1300 lines of code) it will only be discussed
in a general manner. The basic calculation procedure and
some developmental history is presented in the following
paragraphs. The computer program was first developed to
perform the calculations of the steady [L}] matrix. This
allowed a verification of the program logic and a develop-
ment of a reliable steady [L] matrix before modification
of the program to perform the unsteady calculations.
4.1.1 Steady Calculations
The actuator-disc computer program is designed to

perform numerical integrations of five induced velocities
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simultaneously. This allows the simultaneous calculation
of induced velocities at a particular blade radial station
and azimuth position for five loading conditions. This
results in a considerable savings of computer time over

five sequential calculations. The induced velocities are
obtained at a particular azimuth position for all the radial
blade stations from the hub to the tip, after which the azi-
muth position is incremented and the process repeated. The
direction of integration is the reverse of that shown in
equation (71). That is to say, the program is designed to
integrate from the disc to infinity. This process allows
the program to stop when the integrand becomes relatively
small.

The first step in the integration of equation (71) is
the transformation of the disc coordinates into ellipsoidal
coordinates. Simpson's 1/3 rule is used to integrate along
the streamline parallel to the X axis. At each point of
integration, a coordinate transformation is required, the
polynomials P:(v) and QE(in) are evaluated, and the deriv-
atives of the polynomials PQ and QE are evaluated using
the recursive forumulas of Appendix 7.2. Generally, the
program integrates to a final eta of 15 to 20 before the
integral converges. The Pg(v) and Qg(in) polynomials are
calculated using double precision because, for n > 10, the

Qg(in) oscillate about a zero-mean (rather than decaving)
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when only single-preci.ion is used. This is because the Qg(in)
contdin the differences between two relatively large numbers,

which results in high round-off errors.

After a complete azimuth sweep, the induced velocitics

are stored in a 3-dimensional array of size (A,B,5) where A

is the number of azimuth positions, B is the number of blade

radial stations, and the numbers 1 through 5 represent the
CT’ CL, CM’ CZL and CZM loading conditions respectively.

Due to the symmetry and antisymmetry properties of the poly-
nomials, the induced velocities are only calculated for

0 < v < 180. The induced velocities are then integrated in
the radial and azimuthal direction for each separate loading
condition in accordance with equations (75,76,77, and 78) to
obtain the 5x5 and 3x3 [L] matrix. Gauss Quadrature inte-
gration is performed in the radial direction and Simpson's
1/3 rule is used to perform the azimuthal integrations.

As mentioned in the previous section, for the special
case of steady, axial flow, the induced velocity on the
rotor disc is given by equation (72). For this case, the
induced velocity on the disc is the negative of the pressure
distribution. This yields an exact induced-velocity distri-
bution that is used for comparison with the induced-velocity
calculated by the integration of equation (71). Figure 7
depicts the results of varying the integration increment
along the streamline. This figure also depicts the Gauss-

point locations for 10 blade radial stations. It is obvious
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from this figure that the numerical integration becomes more
difficult for blade stations with r > .7, To calculate the
induced velocity close to the tip requires very small inte-
gration increments, while the increments can be considerably
larger in the inboard blade area. To take advantage of this
fact, the computer program uses a nominal integration incre-
ment of .05 for r < .7 and an increment of .01 for r > .7.
This results in a savings of computer time, without sacri-
ficing accuracy of the induced velocity calculations.

We now wish to discuss the numerical accuracy of this
program. Equation (72), when substituted into equation (75),
yields the exact value of the [L] matrix for the case of
a = 90°. This equation can be integrated in closed form to
yield the L(1,1) element as 0.5. Thus, numerical experiments
were conducted with the exact induced velocity being used
to calculate the L(1,1) term. Figure 8 shows the results
of the various integration techniques used to integrate the
resultant induced velocity in the radial direction. (Note
that, for the case a = 90°. the induced velocity attributablc
to Cp is only a function of the radial position.) Rectangu-
lar integration required the calculation of the induced
velocities at approximately 500 blade stations at one azi-
muthal position to obtain a deviation of .0001 from the
exact value of 0.5. The results with the trapezoidal rule

and Simpson's integration show that these require fewer

ki
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blade stations to obtain L(1,1) with the same accuracy as

rectangular integration. Figure 8 shows that the method

H
4
i
t

of Gauss Quadrature gives an order-of-magnitude improvement.
This shows that Gauss Quadrature integration with 11 radial
blade stations will result in a deviation of only .0001 for

the L(1,1) term. This results in significant savings in

computer time, because the induced velocities can be

yopogrym

calculated at only a relatively few blade radial stations
for each azimuth position. Another significant advantage of
Gauss Quadrature is that the induced velocity is only eval-

uated at the Gauss point locations. This allows integration

R WD S W RGN T

in the radial direction from the hub to the tip without ex-
plicitly finding the induced velocity at the tip. This is
of great importance because the induced velocity (equation
(71)) has a singularity at the edge of the rotor disc, §
n=v=0. To obtain the [L] matrix, the induced velocity ]
has to be integrated in the azimuthal as well as the radial i

- direction, as defined by equation (75). Gauss Quadrature

‘"3 is not convenient for the azimuth integration. Consequently,
Simpson's rule is employed with azimuthal increments varying
from 5° to 30°.

The increment for the streamwise integration is de-
termined such that all the terms of the [L] matrix are cal-
culated with an adequate accuracy. Figure 9 shows that the
L(4,4) and L(S5,5) terms, which are equal when a = 90°,

converge at a slower rate than do the other diagonal
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elements. Consequently, the streamwise integration incre-
ment was chosen to give accurdte answers for all terms of
the [L] matrix with a minimum of computer time. (Excessive-
ly small increments result in excessive computer timc.)

Typically, the azimuth increment must be decreased as
the rotor angle-of-attack, o, approaches 0° (edgewise flow).
This is because, as a approaches zero, the induced velocity
changes rapidly in the azimuthal direction since the disc is
in its own wake. The computer program was unable to calcu-
late the induced velocity at o = 0 because the streamlines
coincide with the rotor disc and create singularities. How-
ever, o values as small as O.f)were possible. The computer
time for the steady calculations ranged from 1-4 minutes
for a = 90°, Ay = 30° to 19 minutes for a =,2°, Ay = 5°. This
is the time required to calculate the induced velocity at
10 blade stations, at each azimuth increment, for all 5 load-
ing conditions. Both the [L] matrix and [L]'1 are calcu-
lated for the 5x5 and 3x3 cases for the given angle of
attack during each computer run.

The actuator-disc computer program had the capability
of printing the induced-velocity and pressure distributions
at all radial and azimuthal positions for all five pressure
distributions. This was useful in debugging the computer
program, but was not implemented in the majority of the

computations,

- R L
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4.1.2 Unsteady Calculations

The computer code for the steady condition was extended
to perform the unsteady calculations of equation (97). The
in-phase induced velocities, w, and the out-of-phasc in-
duced velocities, u, are integrated in the same manner as
the steady calculations except that the weighting functions,
cos (Kg) and sin(Kg) are included. The weighting functions
cause the function $’Z' to oscillate as a sine or cosine
function. As the reduced frequency K is increased, the
frequency of oscillation also increases. This means that

the streamwise integration increment must decrease as K

increases. Consequently, computer time will increase with K.

The complex induced velocity is integrated over the rotor
disc to obtain the complex 5X5 and 3X3 [L(K)] matrices.
The program then inverts both the 5x5 and 3x3 complex
matrices [L(X)]. The magnitude and phase angle of each

element of [L(l()]'1

is then calculated. The inverted
elements of the 3x3 complex [L(K)] are compared with the
upper 3 rows and columns of the inverted 5x5 complex [L(K)]
matrix. The program also compares the inverted steady

3x3 and 5x5 [L] matrices with the real parts of the inverted
3x3 and 5x5 complex [L(K)]) matrices. The imaginary terms of
the inverted 3x3 complex [L(K)] martix are also compared

with the imaginary terms of the upper three rows and columns

of the 5x5 inverted [L(K)] matrix. The complex pressure
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distribution and complex induced velocities are printed for
all azimuth and radial positions, if desired.

As with the steady case, a special case was used to
verify the complex induced velocity calculations. Equation
(93) was integrated on the disc in closed form to yield
the exact value of the apparent mass matrix [M]. The exact
values were used to check the numerical integration of the
complex induced velocities on the disc. The program was
found to give accuracy of .0001.

The program is designed such that a single program
performs either the steady or the unsteady calculation. 1If
the value of the reduced frequency, K, is zero, then only
steady calculations and results are obtained. The computer
time required for the unsteady cases is, of course, larger
than for the steady cases. The computer time varied from
6 minutes (for the case of K=0.1, 2=90°, and Ay=15°) to
2.5 hours (for K=300, a=90°, and Ay=15°). As the reduced
frequency K is increased, the streamline integration incre-
ment must be decreased in order to integrate the oscillating
functions of equation (97). To save computation time for
large values of K, an approximation is made to equation (97)
for values of £ > 7. Equation (97) is approximated by a

sinusoidal decaying exponential function of the form

~
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13 11
[3.2' cos(KE)dE = fC"Ar’ cos (Kg)dE

® (110)

€ £
faszv sin(Kg)ds, = -/‘C.A{' sin(kg)deg

® [ )

The advantage of this approximation is that the integration
of the exponentially decaying function is evaluated in
closed form and added to the numberically integrated values
obtained integrating from the disc to £ = 7.0. This approx-
imation results in a 40% savings in computer time with only
a 0.25% change in the complex induced-velocity calculations.
It should be noted that the 2.5 hours for K=300 reflects
the use of this approximation. As in the steady case, as
the angle-of-attack, o, is decreased, the azimuthal inte-
gration increments must also be decreased to account for
the more rapid azimuthal variation of induced velocities.
The computer time is 40 minutes for «=1.0°, Ay=5°, and
streamline integration increments of .01 for r < .7 and
.0025 for .7 < r < 1.0 with the approximation being utilized.
4.2 PRESCRIBED-WAKE COMPUTER PROGRAM

The UTRC prescribed-wake computer program is a large
computer program, approximately 4000 lines of code, that
requires extensive input data. In addition to the normal

blade geometry, airfoil data, control settings, and flight
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conditions, that are used; some of the other input vari-
ables are number of wake revolutions, number of trailing
vortices with their radial locations on the blade, vortex
core size, tip roll up geometry, and prescribed-wake gec-
ometry. Due to the lack of prescribed-wake data, this last
feature was not employed in the research.

The blade geometry and characteristics of the rotor
tested by Kuczynski (54-57) were used as blade inputs. This
allowed us to compare the calculated thrust with actual
data. This also allows a direct comparison with the em-
pirical [L] matrix derived from this test data. Hover
calculations, for 6, = 1° and/6°, showed very good agreement
with the measured data. During these hover calculations,
it was found that the thrust coefficient, CT’ was sensi-
tive to the number of wake revolutions considered. The
best results were with 6 wake revolutions, but this re-
sulted in an increase of computer time to 8 minutes for a
given pitch setting.

The momentum induced velocity, v had to be estimated

o’
prior to each run. A certain amount of trial and error was
required before the v, input would agree with the calculated
CT' Equations (1) through (3) depict the relationship be-
tween v and CT' To help in the process the equations of
reference 3 were used to find 60 for hover and climbing
flight. Using these equations reduced the number of runs

required to trim. The equations of Wei and Peters (69)
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3 were also used to obtain values for eo, es and ec in
forward flight.

The UTRC program had the capability to interpolate the

-

induced velocities at any number of points on the blade
station. Normally, the induced velocity and thrust were
calculated at the 9 radial stations of the trailing vortices.
The vortices are unevenly spaced with a significant concen-
tration at the tip to model the higher tip circulation of the

rotor. To improve accuracy, the induced velocities were

interpolated at 10 Gauss points. This allowed us to use
both Gauss Quadratureintegration of the induced velocity
in the radial direction and rectangular integration in the

V_. The load cal-

azimuthal direction to obtain Vor Vgr Ve

culations of equation (109) were performed using rectangu-
lar integration of the 1lift at the trailing-vortex
locations in both the radial and azimuthal directions.
To obtain the steady [L] matrix for one flight condition
required a minimum of 4 runs at different pitch settings. A "~
separate Fortran program was written to obtain the steady
[L] matrix by inverting the [F) matrix and performing the

matrix multiplication of equation (115).
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5. RESULTS AND DISCUSSIONS

The results of the research will be presented in the
following order: first, the steady, actuator-disc results
will be discussed. Second, the unsteady results will be
presented; and, third, thc results of the prescribed-wake
research will be discussed.

5.1 ACTUATOR-DISC RESULTS
5.1.1 Steady Results

The actuator-disc theory and program previously described
has been exercised to obtain the following results. The
steady 5x5 [L] matrix, its inverse, and the deviation between
the 3x3 and 5x5 inverted [L] matrices were calculated for a
range of alphas from 90° to 0.5°. Calculations were made at
10° increments 40° < a < 90° and at 5o increments for
0° < a < 40°, The smaller increments were required to
sufficiently define the slopes of the curves near o = 0.
Each column of the 5x5 [L] matrix is presented for this
alpha sweep, figures 10-14.

Figure 10 depicts the first column of the [L] matrix
for both the corrected and uncorrected thrust distributions.
The shaded symbols represent the uncorrected thrust loading
(i.e. only C? term in the pressure distribution). The star
symbols depict the exact results obtained for axial flight,
a = 90°, and edgewise flight, o« = 0°, by closcd-form inte-

gration of ecquations (72) and (73). Table 3 lists thec closcd
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form results (exact values) for both the uncorrected and
corrected pressure distributions for the case of edgewise
flow. These values are compared with the results of the

vortex and momentum theories of reference (60). The

L(1,1) term, v

o due to CT’ is 0.5 for the complete range of i

alpha and is also independent of 1ift distribution. This is

the same value predicted by the momentum theory of reference
(63). The L(3,1) term, Vo due to CT’ is zero for the case
of axial flow (i.e. hover and vertical climbing flight).

As o approaches zero, the edgewise flight condition, the
L(3,1) term appears to have a linear variation as it
approaches the exact value. The uncorrccted value of L(3,1)
is approximately 60% larger than the corrected value.
Interestingly, this term is zero for momentum theory, but is
present in the vortex theories. Because the L(3,1) term is
positive and greater than L(1,1) it implies that there is an
upwash at the front of the rotor. That is to say, since
cos(y) is negative for 90° < y < 270°, the resulting induced
velocity is negative indicating an upwash. This upwash has

physically been measured and is documented in references

(13 and 14). The corrected L(3,1) term is essentially the
K-factor used by Glauert to obtain a fore-to-aft linear
distribution of the induced velocity, equation (4). This
term is approximately linear with alpha and is identical to

the K determined by the simple vortex theory of reference

(9), as given in equation (6). The L(5,1) term is the second
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cosine harmonic of induced flow due to thrust, or Voo due
to CT.

Similar to L(3,1), the L(5,1) term is zero at a = 90°
and displays a smooth transition to o = 0°. However, it is
very interesting that L(5,1) changes sign as the thrust load-
ing is varied from the corrected thrust to the uncorrected
thrust distribution. This variation shows that L(5,1) is
heavily dependent on the 1ift distribution. The uncorrected
L(5,1) is always positive and increases in a more nonlinear
fashion than L(3,1). Because of the cos2y term, a positive
L(5,1) will yield a downwash (or positive induced velocity)
at the front of the disc. The harmonic induced velocity

perturbation 2 due to an uncorrected thrust distribution,

c
L(5,1), is relatively large; and for a < 10° it is larger
than the average value of the induced velocity, Voo The
L(5,1) term for a corrected thrust distribution appears to
have the same general slope but with the opposite sign of the
uncorrected L(5,1). The corrected L(5,1) is negative for
all values of a up to o = 90° where it is zero. A negative
L(5,1) will yield an upwash at the front of the rotor disc,
because for y = 180° cos2y is positive and a negative L(5,1)
will contribute a ncgative Vse from equation (74).

In addition to the above numerical results, the

variation with a of the first column of the 5x5 [L] matrix

was obtained in closed form. Mangler in reference (70)
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developed Fourier components of the induced velocity due to
CT' Upon subétitution of these values into equation (75)
with the indicated integration, the first column of the

[L] matrix can be determined. For the corrected 1lift

distribution, the results are

-

L(1,1)

v

15n l1-sina
L(3,1) = &2v VYivsina

(117a-c¢)

l-sina)

-3
LG, 1) 7v +sina

For the uncorrected pressure distribution, the a variations
are the same as in equation (117); but the coefficients are
altered to match the «=0° presented in Table 3.

The second column of the 5x5 [L] matrix and its
variation with thrust distribution and angle-of-attack is
plotted in figure 11. The only non-zero terms for the
second column are L(2,2) and L(4,2). The L(2,2) term is
Voo the sine variation of induced velocity, due to Cps and

L(4,2) is v the second harmonic sine variation of induced

2s’
velocity, due to CL' Figure 11 shows a smooth transition
for L(2,2) .and L(4,2) as o is varied from 90° to 0°; with
all the curves approaching the exact values as a approaches
0°. The L(2,2) term is nearly independent of 1ift distri-

bution for a > 10°; but for a < 10° a noticeable difference
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develops between the corrected and uncorrected values. The
uncorrected L(2,2) at a=0 represents a 100% increase from
its value at a=90°. The corrected L(2,2) shows an even
larger difference between its values at a=90° and a=0°.
Both the corrected and uncorrected L(2,2) are negative
throughout the complete a range. This is interpreted as an
upwash, or negative induced velocity, on the starboard side
of the rotor disc (y=90°, sin90° = +1.0) and as a downwash,
positive induced velocity, on the port side (y=270° and
sin270°= - 1.0) for a positive rolline moment. The L(4,2) term
has a dependence on 1lift distributior that is independent
of a. The corrected and uncorrec*ed Li{+,2) are both zero
at a=90° and they increase nonlinearly as o varies from 90°
to 0°. At a < 10° the magnitude of the uncorrected L(4,2)
is larger than that of the uncorrected L(2,2). At y=135°
the L(4,2) value is positive (sin2y=-1 at $=135°) and L(2,2)
is negative (siny=.707 at w=135% with the resulting induced
velocity from a positive rolling moment being positive at
this point on the rotor. This phenomenon is also apparent
at y=225° where the signs are reversed. This phenomenon is
not apparent for the corrected thrust case, where the L(2,2)

term is larger than L(4,2) for all alphas.
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Figure 12 gives the third column of the 5x5 [L] matrix,

which is the induced flow due to pitching moment, Cye At

a=90° the L(3,3) term is -2.0, which is the same value as
L(2,2) for a=90° and is the same as predicted by momentum

theory. Thus, for the case of a=90° the L(2,2) and L(3,3)

terms are equal, which is to be expected due to the symmctry

of the airflow through the rotor for axial flight. The
L(1,3) is the average induced velocity, Vo L(3,3) is the
fore-to-aft induced velocity, Ve and L(5,3) is the second
harmonic of the forc-to-aft induced velocity distribution,

E Voeo The corrected and uncorrected L(1,3) and L(5,3) terms

| are zero at a=90°. The L(1,3) term varies smoothly with a,

with a difference between the corrected and uncorrected re-

sults for o < 30°. The difference between the corrected

and uncorrected L(1,3) is a maximum at a=0 where the corrected

term appears to have a linear variation; and the uncorrected term

becomes increasingly nonlinear for a < 15°., The (1,3) tecrm

for a positive pitching moment will yield a positivec average

induced flow, Voo which will add to the Vo due to thrust

causing it to increase. The L(3,3) term is very interesting
in that it varies from a value of -2 at a=90° to zero at a=0.
This term has a smooth nonlinear variation that is indepen-
dent of lift distribution over the range of 30°< a < 60°

For a < 30° the corrected value has a slightly larger abso-
lute value. However, both the corrected and uncorrected

L(3,3) values are zero at a=(0. This means that there is no
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fore-to-aft or cosine component of induced velocity at a=0
for a pitching moment. L(5,3) is also zero at a=0 which
means that there is no second-harmonic variation of the
fore-to-aft gradient. The L(5,3) term varies from 0 at

a=90° to 0 at «=0° with small ncpative values bhetwecen.

This term shows a dependence on lift distribution, with the
absolute value being the largest at a=30° for the uncorrccted
pressure distribution.

Figures 13 and 14 depict the effects of the second-
harmonic loading distribution on the induced flow. These
results can be used to determine if perturbations in the
higher-harmonic air loads will cause significant changes in
Vs V

» or v_ and thereby invalidate one of the basic

S C

assumptions of dynamic inflow theory. For the higher-har-
monic loadings, a single radial loading distribution was
used, (i.e., an uncorrected pressure distribution).

The fourth column of the 5x5 [L] matrix yields the in-
duced flow due to C2L which is a second-harmonic sine vari-
ation in load. The results for C, are presented in figure
13. At a=90 the L(2,4) term is zero and L(4,4) is -3. The
term L(4,4) represents a second-harmonic of the side-to-side
induced velocity variation. Figure 13 shows a smooth vari-
ation of L(2,4) and L(4,4) with alpha. At a=0 L(4,4) is
zero but L(2,4) is 2.577. It appears that the positive

L(2,4) will decrease the magnitude of v_ (for a positive C‘)

s
because L(2,2) is negative. This effect is independent of a.
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The terms L(2,4) and L(4,4) vary nonlinearly with alpha,
both displaying increasing slopes as a is decreased from
900. The L(4,4) term is more steep and has a slightly
larger variation in its magnitude as a varies from 90°to
00. The L(4,4) term, second-harmonic sine variation of
induced velocity due to sin2y loading, is zero at a of 0?
However, L(4,2) of figure 11, which is the second-harmonic
sine variation of induced velocity due to a sine loading,
is nonzero at a=00.

Figure 14 depicts the fifth column of the [L] matrix,
which is the induced velocity due to a second-harmonic co-
sine variation of the pressure distribution. The L(1,5)

term, v_ due to Copme is zero for all alpha. This is in

o}
contrast to the L(1,3) term which is nonzero. The L({3,5)
term is observed to vary from 0 at a=Qd)to a maximum at
a=30? It returns to zero at a=0°. This means that the
second harmonic cosine loading will result in a small
positive first harmonic cosine variation of the induced
flow, v_. The L(5,5) term is equal to L(4,4) at a=90°,
which is expected due to the symmetry of the airflow. The
L(5,5) term has a smooth nonlinear variation with o and
appears to be of the opposite sign of the L(4,4) term.
Thus, as a approaches zero the magnitude of L(5,5) is in-
creasing to a maximum of -6 at a equal zero. This shows
that for the case of edgewise flight, there is a second

harmonic cosine variation of the induced velocity due to a

A
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second-harmonic cosinec variation of the pressure distri-
bution. This is in contrast to L(3,3) and L(5,3) for cdgc-
wisc flight, in that there is neither a first nor seccond
cosine variation of induced velocity due to a first-harmonic
cosine variation of the pressure distribution.

The inverse of the steady [L] matrix is required in
determining the unsteady induced velocities as given by
equation (32) and (106). Consequently, it is important to
determine the effects of the corrected and uncorrected pres-
sure distribution on the inverse of the [L] matrix.

Figure 15 is the first column of the inverted (L] matrix;
and for the steady case, {v} = 0, it represents the aero-
dynamic loading {F} due to V- Figure 15 shows a smooth
transition for all terms from a= 90° to 0°. At «a=9%0°, all
terms are zero except the L[l,l]'1 term, which is 2.0. 1t
should be noted that for axial flight the [L] matrix is a
diagonal matrix with no cross-coupling terms. Consequently,
the inverse of the [L] matrix for a=96)is straight-forward
and is the reciprocal of each element of the [L] matrix.

The L[1,1] 1

term, CT due to Vo is dependent on the 1ift
distribution and has a nonlinear variation from a=90° to
a=0°; where the term is zero. The (3,1) term, CM due to
Vo» 1is also dependent on the lift distribution and appears

to be a linear variation from 0 at a=90° to its maximum at

a=0°, At o=0° there is considerable difference in the (3,1)

term for the corrected and uncorrected load distributions.

A
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Figure 15. First Column of Inverted [L] matrix
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Figure 16 is the second column of the inverted [L] matrix
and represents the loading duc to vs for the steady condition.
The L(2, )'1 term is shown to vary from a maximum at a=90o to
zero at a=0. There is little variation of L(2,2) term witkh
thrust distribution. The (4,2) term, however, shows somc
dependence on 1lift distribution, except at a=0° and 90°
where there is no difference. The (4,2) term is zero at
a=90o and increases smoothly to its maximum at a=0°.

The third column of the inverted [L] matrix is plotted
in figure 17. The L(l,:‘;)-1 term shows a nonlinear variation
from 0 at o= 90° to a maximum at @=90°. A significant differ-
ence between the corrected and uncorrected values indicate
this term's dependencylon lift. The L(1,3).1 term is CT

due to v . The L(3,3) term is invariant with o and lift
c

distribution for practical purposes. The negative value

for this term indicates that a positive Ve reflects a

-1 -
negative C,. The L(5,3) term, Com due to Ve is necarly zero

for all alpha with a slight variation for a < 30. 1In this !
same alpha range, there is a slight dependency of the L(5,3)

term on lift distribution.
The fourth column of the inverted [L] matrix represents

the aerodynamic loading, {F}, due to Voo which is the sccond-
sine-harmonic of the induced velocity. Figure 18 is the

-1
fourth column of the inverted [L] matrix. Both the L(2,4)

and L(4,4) terms are dependent on the 1lift distribution for

a < 60°. The corrected thrust distribution results in larger

-1
absolute values for both terms. L(2,4) , C; due to st is

gy o

S e
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zerc at a=90° appears to vary lincarly in the range;
40o < a < 900; and hecomes very nonlinear as a approaches
zero. The corrected L(4,43 term 1s seen to be extremcly
nonlinear for a < 20° and appears to have an almost in-
finite slope at a=0. This term is C2L due to Voo

The fifth and last column of the inverted [L] matrix
is presented in figure 19. It is apparent that the terms
in this column are essentially independent of thrust

distribution. The L(1,5)'1 term, C, due to v and

2c’
- 0

L(3,5) 1, CM due to V,.» are zero at a=0° and o=90, with a

somewhat symmetric variation between these angles-of-attack.

-1

The L(5,5), term CZM due to v varies smoothly from a=90°

2c’
)
to o=0 , with its absolute value being the largest at a=90°,

When inverting a nondiagonal matrix, changing the values

of some of the elements will affect the total inverted matrix.

As part of this research, the difference between the 5x5 and

3x3 inverted [L] matrices was investigated. The elements

of the 3x3 [L] matrix are readily obtainable by just elimin-

ating the fourth and fifth columns and rows of the 5x5 [L]

matrix. However, this procedure is not valid on the inverted

matrix due to the interaction of all the elements. Thus we

wish to compare the upper 3x3 portion of the two matrices.
Instead of showing the elements of the 3x3 inverted

L] matrix, we show the deviation between the inverted 5x5

[L] matrix and the inverted 3x3 {L] matrix. The deviation

matrix is defined as

T

. demmgun
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S ) s s i n

DMAT(I,J) = Lg(1,3)" - LS(I,J)~1 (118)

ORI

1=1,3
J=1,3

Figures 20 and 21 give the difference between the in-
verted 5x5 and 3x3 [L] matrices. It is apparent {rom hoth
of these figures that the deviation at a=90%°is zero for all

elements and all loading conditions. Elements (1,1) and

(3,1) vary smoothly from 0 at a=90°to nearly zero at a=(P°
with a maximum deviation occurring at a=20° The absolute
values of the corrected (1,1) and (3,1) terms have a larger
deviation than the uncorrected values. The L(1,3) and
L(3,3) terms plotted in figure 21 have a shape similar to
the elements of the first column shown in figure 20. How-
ever, for the (1,3) and (3,3) terms, the absolute valucsof
the corrected distributions are larger than those of the
uncorrected. This is opposite to that shown in figure 20.
The (2,2) element results in the largest deviation between
the inverted 3x3 and 5x5 [L]) matrices; for the case a=é)and
an uncorrected loading. It should be noted that neither the
3x3 nor 5x5 inverted matrices are singular, and all elements

display smooth variations with «a.
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§.1.2 Unsteady Results

In this section, the properties of the inverted com-
plex (L] matrix will be cxamined. The complex [L] matrix
was calculated as described in the previous sections, con-
sidering the two different solution techniques of Supecr-
position of Velocities (S.V.) and Supecrposition of
Pressures (S.P.). The significance of the results to bhe
presented in this section is that a true rotor should be-
have somewhere between the two theories. Thus, the results
will represent an upper and lower boundary of the dynamic
inflow model.

The first case to be presented is the case of axial or
hovering flight. The unsteady effects of axial flight have
been fairly well documented by previous analyses and tests.
Both the complex [L(K)] matrix and the inverted complex
[L(K)]'1 matrix are diagonal matrices for a=90°. This is
advantageous in that none of the elements are coupled,
meaning that each element is straightforward and indepen-
dent of the other elements. Figures 22-24 give comparisons
of the imaginary parts of the diagonal element of the in-
verted complex [L] matrix as calculated by each method.
These figures depict both the corrected and uncorrected
load distributions. As mentioned in section 3.1.2,
equation (93) is evaluated in closed form for the special
case of v=0, a=90° to obtain the apparent mass terms. The

results of this closed-form apparent mass calculation is
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TABLE 4

Eiements of M-Matrix

Element Uncorrected Corrected
Hll 5% = ,B84BR ;*:% e 5430
Myy = My, - %%; . - 1132 - %%%; . -.0862
L - T%%%T = -.0517 .
H‘j. 143 ] 0
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given in Table 4. Several points are noteworthy. First, i

the uncorrected values of Mll’ MZZ’ and M33 are identical
to the values obtained by Peters (63) who used potential

theory to determine the apparent mass of an impermeable

disc. Second, there are significant differences between
the apparent mass for corrected and uncorrected 1lift ¥
distributions. Therefore, the apparent mass terms are more
.sensitive to pressure distributions than are the steady
terms. Third, the apparent mass terms decrease with in-
creasing harmonics of induced flow, v. The apparent mass

terms of Table 4, both corrected and uncorrected, arc uscd

in obtaining the inverted complex [L] matrix by the super-

position of pressure (S.P.) theory.

et O

From comparing figures 22 through 24, it is apparent
that all elements of the complex [L] matrix are zero for a

reduced frequency of zero. The reduced frequency, K=w/v,

is defined as the ratio of the rotor oscillating frequency,
w, to the free-stream velocity-ratio, v, of the rotor. The

(1,1) term is always positive and all other terms arc

Tl AN ORI

negative. At relatively large reduced frequencies, K x> 300,
the S.V. and S.P. give the same results. The rate of con-

vergence appears to be independent of thrust distribution or

g gererryer g =gy

of harmonics of the induced velocity. The latter statement
implies that the rate of convergence for all elements is
about the same. Comparison of the imaginary values of cach

element of the matrix at K=300 verifies the closed-form

o
3
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result that stated that the apparent mass terms decrcasc with
increasing harmonics of v. It is interesting to note that
the uncorrected thrust distribution results in a larger
imaginary term for figures 22 and 23 than does the corrected

thrust distribution. A comparison of the two solution

techniques shows that the largest absolute differences are L
in the range 50 < K < 200. The difference between results
of the two solution techniques appears to be the same for
either the corrected or uncorrected load distribution.
Finally, for a reduced frequency in the range of 0 < K < 20
the differences between the solution techniques is small,
although the percentage difference is large. This can be
seen more clearly in the apparent mass terms.

The apparent mass for either solution technique can be
obtained from the ratio L'l(K)/K in figures 22-24. Thus K
times each apparent mass term will yield the imaginary part

of the inverted complex L-matrix. A comparison of the

apparent mass terms as calculated by each solution technique
is presented in figures 25-27 for the case of axial flow.
Due to the symmetry of the airflow through the rotor for
axial flow, a=90°, the M(2,2) and M(3,3) terms are cqual

and the M(4,4) and M(5,5) terms are also equal. Figures
25-27 give a comparison of the relative magnitude of the
apparent mass terms. It is seen that the M(1,1) term is
larger than the M(2,2) and M(3,3) terms which, in turn, are

larger than the M(4,4) and M(5,5) terms. The M(1,1) term is




i.
-118- |
-------- SUPERPOS. OF VEL.  ~ CORRECTED !
————— SUPERPOS. OF PRESS. ~ CORRECTED '
~———— SUPERPOS. OF UEL. ~ ~ UNCORRECTED
SUPERPOS. OF PRESS. - UNCORRECTED
2.0
. , !
. APPARENT MASS - M(1,1) Figure 25. Apparent ,
N Mass E]emcgt M({1,1)
- for a = 90
1.5~ %
]
4 "
N
1.0 N
! e ——— e
)
A}
\\\ -
_________________________ L
.05 I‘l_Ilj—rI_TYI‘llllIﬁlYIlT“’ll]TﬁlW

L] 50 100 180 200 4] 300 i

REDUCED FREQUENCY = K

AT

APPARENT MASS - M(2,2) & M(3,3)

-------- SUPERPOS. OF VEL. - CORRECTED
—————— SUPERPOS. OF PRESS. - CORRECTED ]
. — ——— SUPERPOS. OF UEL. - UNCORRECTED ‘
Figure 26. —————— SUPERPOS. OF PRESS. - UNCORRECTED
Apparent Mass -0.075
Elements M(2,2)
and M(3,3) for e
a = 90° “ S
’01100—' ’l'
1 -
J ’l' T
-00 las__' " ’—f’-—
' Pl
1 /7
3,/
-o.:so—:nl/
-..17
'0-200—11r—vT]lrvul|1T111T11111ﬁ—r]—v111 ]

] 5@ 100

150 209 ase 300

REDUCED FREQUENCY - K




T e S AR

-119-

positive and the other terms are negative. It is interesting
to note that the apparent mass terms due to the corrected
pressure distribution are always smaller than the apparent
mass associated with the uncorrected pressure distributions.
This can possibly be explained by the fact that with the
corrected pressure distribution the 1ift tends towards the
edge of the disc, while for the uncorrected pressure distri-
bution it tends towards the hub. The apparent mass elements
calculated by the S.V. method asymptotically approach in-
finity as K approaches zero. This is exactly analogous to
the case for an unsteady wing in which the log (X) term in
the Theodorsen function given an infinite slope at K=0,
Ref. (71). However, as K is increased, the apparent mass
calculated by the method of S.V. exponentially
approaches the apparent mass calculated by the S.P. method.
At a reduced frequency of K=300, figures 25-27 show that the
apparent mass of both methods agree. Even though there is a
large difference in the apparent mass terms calculated by
the superposition of pressures and velocities in the K < 50
range, the reduced frequency is small and consequently the
imaginary terms are relatively small, and the effects of the
different apparent masses are not great.

To better understand the difference between the inverted
complex L-matrix as calculated by S.P. and S.V. methods, it

is good to compare the magnitudes and phase angles of the

_ n‘r . . B
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complex clements for each method. The magnitudes of the
elements of the inverted complex L-matrix are presented in
figures 28-32. The magnitudes are given on a log-log graph
for both the corrected and uncorrected pressure distributions
for the case of axial flight. (We recall that the (4,4) and
(5,5) elements are always uncorrected.)

Figure 28 presents the magnitude of the (1,1) element
of the complex L-matrix as calculated by each theory for a
corrected thrust distribution. The magnitudes were plotted
on a log-log scale, because this affords the capability to
compare magnitudes at both high and low K values without
masking small differences. The S.V. magnitudes are for
discrete K values over the range of interest, .1 < K < 300.
The S. P. magnitudes are obtained from the square root of the
sum of the squares of the real and imaginary terms. The real
part, shown on the figure as a dot-dashed line, is the (1,1)
term of the inverted steady L-matrix for a=90°. This value
can be obtained from figure 15. The imaginary term for the
S.P. method, shown on the figure as the large dashed linc,
is the apparent mass M(1,1) multiplied by the reduccd
frequency K. The combined magnitude of the real and imaginary
parts are shown as the dotted line. It is interesting to
note that when the lines of the real or imaginary component
coalesce with the magnitude line, then the respective
component is predominantly larger than the other term. For
example, in figure 28 for K < .3 the recal part dominates

and for K > 30 the imaginary part dominates. The maximum
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difference between the S.P. and S.V. theories is for the case
of corrected thrust loading in the range of 1 < K < 10.

At K = 3, the difference is close to a factor of 2.0. There-
fore, we conclude that either theory may deviate by *+ 30%
from the true value at K = 3. Although this is disappointing,
especially since this is in the range of most interest, we
recall that the effect of dynamic inflow is itself a corrcction
factor. Thus, errors of 30% in a correction term may be
acceptable. Figure 29 gives the (1,1) term for uncorrected
thrust, and it appears to have a closer agrecment between the
two theories than does the corrected. For axial flight, the
real part for the corrected and uncorrected thrusts are the
same. However, there is a difference in the apparent mass
(i.e. complex part) of the L inverse matrices. Comparing
figures 30 and 31, one can see that the uncorrected pitch

and roll moments yield better agreement between the S.P.

and S.V. Since most uses of dynamic inflow (such as air
resonance) are primarily roll and pitch, this is further
justification for the adequacy of dynamic inflow thcory.
These figures also show differcnce in the slopes of imaginary
components (of the S.P. theory) between the corrected and
uncorrected pressure distributions. This is due to the
difference in apparent mass. Figure 32 shows very good
agreement between the two solution techniques for the 2/rev
elements but it also shows that these are smallest of all

the elements. The good correlation for the (4,4) and (5,5)

term is tempered by the fact that these terms arec manifested

4
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by the second-harmonic pressure distribution, which for real
rotors is of a secondary effect.

To fully understand the behavior of the inverted complex
L-matrix, it is beneficial to look also at the phase anglec
variation of each element as a function of reduced frequency.
The phase angle can be considcred to be a time lag between 1
the in-phase and out-of-phase induced velocities. Figures *

33 - 37 present the phase angle of all nonzero elements of

the inverted complex L-matrix at a = 90°. The phase angles,

similar to the magnitudes, are plotted for varying reduced

frequencies in the range of .1 < K < 300 and for both the
corrected and uncorrected pressure distributions. It should
be noted that these are semi-log plots with reduced frequency
being plotted on a logarithmic scale. For ease of comparison,
the phase angles of both solution techniques, Superposition
of Pressures (S.P.) and Superposition of Velocities (S.V.),
are presented on the same figure. The phase angle is the

arc tangent of the ratio of the imaginary part to the real
part. For the S.P. method, the real part is the inverted,
steady L-matrix and the imaginary term is the apparent mass
multiplied by the reduced frequency. We recall from the

results of section 5.1.1 that, for o = 90°, the real term

is independent of thrust distribution. Therefore, the
difference in the S.P. phase angles between thec corrected
and uncorrected pressure distributions is due to the differ-
ence in the apparent mass for these two distributions. The

phase angle for S.V. is defined as the arc tangent of the
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ratio of the imaginary part to the real part of the inverted |
complex L-matrix obtained by integration of the complex i
induced velocities of equation (97). 5
Figure 33 presents the phase angles for the (1,1)
element for the corrected thrust distribution. This figurc

shows that for K < 5 that the phase angles calculated by

the S.V. method are larger than the S.P. phase angles. This
trend is reversed for K > 11 where the S.V. phase angles are
smaller than the S.P. phase angles. The two techniques agree

at a reduced frequency of approximately 5. It is interesting

to note that at K = 300, the phase angles of the S.P. and

S.V. differ by approximately 5 degrees, although figure 28
shows that the magnitudes of the two methods agree at this
point. It can be noted that, at the higher reduced-frequency
range, the slopes of the S.P. and S.V. phase angles differ
slightly. Since the real part of the S.V. phasc angle is
larger than the real part of the S.P., which is itself
constant for all K, one would expect the curves to be ncarly
parallel and the slopes to be equal for high reduced frequen-
cies. However, the slopes appear to be different. This can
be explained by the fact that the real part of the S.V.
technique is becoming increasingly larger for an increasing K.
(This will be shown later) The above comments are also
applicable to the phase angle due to the pitch and roll moments
shown in figure 35 and the phase angle from second-harmonic

load distribution shown in figure 37.
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The phase angle comparison for the uncorrected thrust
distribution is depicted in figure 34. The uncorrected S.P.
and S.V. phase angles have a better correlation than the
phase angles for the corrected pressure distributions. A
comparison of figures 33 and 35 with 34 and 36 shows that
the S.P. phase angles for the uncorrected pressure distri-
bution are almost identical to those of the corrected
distribution, except that the former are shifted to the left.
That is to say, that for a given K the uncorrected S.P. phase
angles are slightly larger than their corresponding corrected
phase angles. This is to be expected, because the S.P. real
term is independent of pressure distribution for a = 90° and
the S.P. uncorrected apparent mass is larger than the corre-
sponding uncorrected terms. Thus, the only difference between
the S.P. phase angles for the correct and uncorrected
distribution is due to the different apparent mass terms.

For the S.V. method, there is a definite change in the slope
and magnitude of the phase angles calculated for the corrected
and uncorrected pressure distributions. This would imply

that the real and imaginary parts of the S.V. inverted

complex L-matrix are dependent on the radial load distribution.

Finally, the closest agreement for the S.P. and S.V. phase
angles are shown in figure 37 for the second-harmonic pressure
distribution.

Up to this point, the unsteady results presented are
for the axial flow case. A major part of this research is to

determine the comparison of the complex interved L-matrix
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obtained by S.P. and S.V. as the angle of attack varies

from o = 90° to a = 0°. The inverted complex L-matrix

obtained by the S.P. method consists of the superposition
of the inverted steady L-matrix and the apparent mass matrix.
The apparent mass matrix, as given in Table 4, is a diagonal
matrix that is independent of the rotor angle-of-attack and
is the complex part of the inverted matrix. The real part
is the inverted steady L-matrix, which varies with angle of
attack. This variation was discussed in the steady results.
The inverted complex matrix obtained by the S.V. method is
found to vary with angle-of-attack. The inverted 5 X 5
complex L-matrix has the following nonzero elements; (1,1),
3.1, (5,1), (2,2), (4,2), (1,3), (3,3), (5,3), (2,4), (4,4),
(1,5), (3,5) and (5,5). It would be quite lengthy to discuss
the magnitude, phase angle, imaginary component, and real
component of each of the 13 clements of the complex inverted
L-matrix. Consequently, only the first column, elements
(1,1), (3,1), and (S,1) and their variation with alpha will
be discussed in detail. However, data and figures for the
other elements are presented as supplemental data in Appendix
7.4, Furthermore, most of the comments about the elements
in the first column also pertain to the figures in Appendix
7.4. The following data is based on a corrected pressure
distribution unless otherwise noted.

The magnitudes as calculated by S.V. method are presented

in figures 38 - 40. The magnitude of the (1,1) element is

shown to vary slightly with angle-of-attack is figure 38.
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The magnitude decreases by a constant value for all values |
of K as o decreases. We also note that, at K = 0, the ﬂ
magnitude of the (1,1) element approaches zero as a approaches !
zero. This agrees with the steady inverted complex L-matrix
of the S.P. method, shown in figure 15. We have previously
discussed the comparison of the S.P. and S.V. for the (1,1)
elem.nt at a = 90°. As 4 varies, the S.P. varies as the
inverted, steady (1,1) element with the addition of the
apparent mass effects. Figure 39 displays the magnitude of
the (3,1) element as computed by the S.V. method for the 4
sweep. At a = 900, both the S.P. and S.V. methods predict a
magnitude of zero. As angle-of-attack is varied, the magni-

tude of this off-diagonal element of the S.P. complex,

inverted L-matrix possesses only a real part, which is the

inverted steady L term. Thus, at K = 0, the magnitudes
predicted by the S.P. and S.V. are the same. As K increases, h
the magnitude of the S.P. remains constant and is a horizontal ;

line drawn from the K = 0 point. (Note this line is not shown

on figure 39 and 40 for sake of clarity). Interestingly,

there seems to be a decrease in the magnitude of the (3,1)

term for S.V. at K = 5. Also, the magnitude is seen to have

a linear increase for all a as K increased beyond 10. This
increase in magnitude implies that either the real or imaginary
or possibly both parts are increasing. Figure 40 depicts the
magnitude of the (5,1) term for various values of a. The S.V.
magnitude ata=90 60 and 30°agrees well with the S.P.

magnitude (K = 0). It is noted that the S.V. magnitude for
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a = 5° displays numerous peaks. Originally, the computer
runs were made at a = 1°, however, the peaks were more
prominent and pronounced. It is felt that the peaks are

due to the rapid azimuthal variation in the complex induced
velocity, combined with the numerical difficulty of
integrating the oscillating streamwise functions. To verify
this assumption, the complex induced velocities are plotted
along the longitudinal and lateral rotor axis, figures 41
and 42. Both the unsteady induced velocities and the steady
induced velocities are shown in the figures. A comparison
of figures 41 and 42 shows that the unsteady induced velocities
have oscillating lateral and longitudinal induced-velocity
distributions. This oscillatvory, induced-velocity field
(combined with rapid azimuthal changes), increases the
difficulty of the numerical integration of the complex L-

matrix. It is also interesting to compare the magnitudes

of the (1,1), (3,1) and (5,1) terms at K 30. It is
obvious that the relative size of the (1,1) term is larger
than the (3,1) which is in turn, larger than the (5,1) term.
The effects of the a sweep on the phase angles of the
first column of the inverted complex L-matrix are presented
in the figures 43 - 45. Figure 43 shows the phase angle
variations of the (1,1) term. The comparison of the phase
angles obtained by the S.P. and S.V. methods at o = QJ)has
already been discussed and is given in figure 33. As the

angle-of-attack is varied, only the real part changes

in the S.P. method. Therefore, the phase angles for the

e T

TR . -
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S.P. method are virtually independent of a. It is also seen
that the S.V. phase angle of the (1,1) term increases slightly

as a decreases. There is little difference between a = 90°

and o = 60°, and there is only a 5 degree difference betwcen
o = 30° and « = 5° at K = 30. The case for o = 5% appears

to have a few peaks. At K = 30, the phase angle appears to
lie between 70 and 80 degrees for all g-values calculated.
Figure 44 shows the phase angle for the (3,1) term. The
phase angles for the S.P. method is zero over the complete
¢ and K range for all the nondiagonal elements of the

inverted complex L-matrix. The phase angle for S.V. is also

zero for o = 90°; but, for all other values of 4, the phase
angle appears to approach 40° at K = 30. Interestingly, this
is approximately 1/2 of the (1,1) phase anzic at K = 30. The
most noticeable aspect of figure 44 is that the phase angle
changes sign and passes through zero at a reduced frequency

of 4. This would indicate that either the real or imaginary
part of the (3,1) term changes sign in this region. The phase
angle of the (5,1) term is presented in figure 45. This
figure shows that the (5,1) phase angle also varies with K

and a. At o = 90, the phase angle is zero which again

implies that the S.P. and S.V. method give the same results

at a = 90. However, for all other o, the S.V. method predicts
a phase angle which changes sign twice and passes through

zero at both K = 4 and K = 8. The (5,1) phase angle is

20 degrees at K = 30 and appears to be independent of . The

value of 20 degrees is about 1/2 of the (3,1) phase angle and
1/4 the (1,1) phase angle at K = 30.




-139-

The imaginary parts of the first column of the inverted
complex L-matrix are presented in figures 46 - 48. Figure
46 depicts the S.V. complex part of the (1,1) term for the
a sweep of 90 to 5 degrees. It should be noted that the a
= 96>curve can be compared directly to figure 22 in order
to determine the difference between the complex parts as
predicted by the S.P. and S.V. methods. In accordance with
the assumptions of the S.P. method, the (1,1) term is
independent of a; and the (3,1) and (5,1) terms have no
imaginary part. However, from figure 46, it is noted that
the S.V. imaginary term shows a slight decrease in value
for a decreasing angle-of—aftack. We assume that the
imaginary part is determined by the apparent mass times the
reduced frequency. Thus, the apparent mass for M(1,1) is
slightly dependent on rotor angle-of-attack. We also note
that for a = 5° there are several small peaks, which are
attributed to the rapid change of the induced velocities at
low angle-of-attack. The imaginary part of the (3,1) term
is given in figure 47. The (3,1) term is observed to change
sign and pass through zero at approximately K = 4. For the
imaginary part to be equal to zero means either K is zero or
the apparent mass is zero. Thus, the (3,1) apparent mass is
equal to zero at K = 4 for all angles-of-attack. As the
angle-of-attack decreases, the imaginary part is observed
to increase. The slope of the imaginary curves at K = 30
is small, which implies that the apparent mass term is small.
Figure 48 shows that the imaginary (S5,1) term changes sign

twice and passes through zero at K = 4 and K = 8. This mcans
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that, at K = 4 and K = 8, the apparent mass M(5,1) is zero
and is independent of a. We also note that, as a decreases
from 90°, the imaginary terms increase. From the slope of
the curves at K = 30, the apparent mass term, M(5,1) must
be fairly small.

The real part of the inverted complex L-matrix as
determined by the S.P. method is just the inverted steady
L-matrix. In contrast, the real part of the S.V. inverted
complex matrix is obtained by inverting the unsteady L-
matrix that is obtained by integration of the complex induced
velocities on the rotor disc. Figures 49 - 51 depict the
deviation between the real portion of the inverted complex
matrices (S.P. and S.V.) for various angles-of-attack.
Figure 49 shows the deviation for the (1,1) term, and the
deviation is shown to increase for increasing K. This
means that the real part of the S.V. (1,1) element is
dependent on K, whereas for the S.P. method, it is assumed
to be independent. The (1,1) deviation is shown to decrease
as alpha is decreased from 90°% The fact that the steady,
inverted (1,1) term varies from a maximum of 2.0 at a = 9(¢°
to zero at a = 0, implies that even though the relative size
of the deviation decreases with a, the percent error is
increasing. The deviation of the (3,1) term is shown in
figure 50. It changes sign and crosses through zero as K
is increased. As o decreases from 90° the relative deviation
at K = 30 increases. Figure 51 depicts the deviation of the

real part of element (5,1). For a > Sd% the (5,1) deviation
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is small and almost independent of reduced frequency. The
largest deivation for the (5,1) term is for a = 5 and the
deviation appears to be constant for K > 18.

For the case of axial flight, o = 90°, the inverted
complex L-matrix obtained by either the S.P. or the S.V.
method is diagonal. Consequently, there was no differcnce
between the inverted 5 X 5 and 3 X 3 matrices. Figures 52
and 53 compare the imaginary parts of the (1,1) and (3,1)
elements of the 5 X 5 and 3 X 53 S.V. inverted complex L-

matrix. The figures show that there is little difference

between imaginary parts for the 3 X 3 or 5 X 5 matrices.
The imaginary part of the complex L-matrix is large at K = 30,
yet the difference is less than 0.1. For K < 10, there are
some more spurious peaks with the largest being for o = 5°.
Even with these peaks, the deviations are relatively small.

In reference 71, an analytic 3 X 3 L-matrix and apparent

mass matrix was suggested, based on preliminary results of

this research. These matrices are presented in Table 5. The

rational for the development of these elements will be

addressed in Section 6. However, it is important to note
that the first column of the M-matrix is for a corrected
pressure distribution, while the second and third columns

are for uncorrected pressure distributions. We will now

discuss the results of using the analytical 3 X 3 M-matrix
and L-matrix in the S.P. formulation and the subsequent
comparison to the 3 X 3 S.V. matrices. Figure 54 compares

the relative magnitudes of the S.V. (3,1) and (1,3) ratiocd

_ I
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TABLE 5

Analytic Forms of L-Matrix '
and M- Matrix !
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to the (3,3) element for a = 30° The ratio of magnitudes is
also presented for the S.P. theory in figure 54. This ratio
gives an absolute measure of the magnitude of the off-diagonal
terms in comparison with the diagonal elements. The relative
magnitude of the off-diagonal terms is shown to decrease for
increasing K. This not only tells us of the importance of
the off-diagonal terms but is also a direct comparison of
the S.P. method, for which off-diagonals are assumed to be
real and have no imaginary part; with the S.V. method, the
elements which have both real and imaginary terms. Figure
54 shows qualitative agreement between the two theories. It
is interesting to note that the S.V. calculations are not
symmetric as are those of S.P. Figures 55 and 56 show the
phase angles of the ratio of the off-diagonal to the (3,3)
element as calculated by S.P. and S.V. For o = 909 both
figures show good correlation of the phase angles. However,
for o = 309 the correlation is poor with the general shape
of the curves being similar but with a discrepancy in the actual
values. Lastly, it is interesting to note the phase angles
predicted by the S.V. method are not symmetric. In fact,
the phase angle in figure 56 changes shape radically in the
range 2 < K < 6.
5.2 PRESCRIBED-WAFE RESULTS

The rtesults of the 3 X 3 Prescribed-Wake (PW) L-matrix
are presented in figures 57 - $9. The rotor characteristics
are the same as those tested in refcrences (54 - 57). The

rotor moves with respect to still air at 20 {t/sec and the
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tip speed is 216 ft/sec. The L-matrix is calculated at the
following angles-of-attack: 90°, 60°, and 30°. However, |
the effective angle of attack is a function of the steady
rotor thrust and inflow conditions. The effective angle-of-
attack is given in reference (71) as
at = tan 1 X + ¥ (119) 5
"
|

For a helicopter in forward flight, a* is generally larger

than 6 degrees. The effective angle of attack was used in

1
1.
3' plotting the PW L-matrix of figures 57 - 59, 1In these figurcs, b
; b
% the 30° and 60° cases are shifted to the right because the H
! \
-------- L(1,1) A L(1,1) WAKE
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Figure 57. First Column of the Prescribed-Wake L-Matrir
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Figure 58. Second Column of the Prescribed-Wake L-Matrix

effective angle-of-attack of thrusting rotor is larger than
the geometric angle-of-attack.

The L-matrices generated in this section require 4
prescribed wake calculations for each . First, a baseline
case is run for a typical control setting. Second, the

controls (eo, 0. ec) are varied sequentially. For each

S

variation, the change in Vgr Vgr V

S c’
A linear inversion then gives I, as described earlier.

The first column of the PW L-~matrix is presented in
figure 57. 1In this figure the steady Actuator Disc (AD)
L-matrix is presented as dotted/dashed lines. The (AD) L-

matrix is prescnted for both the corrected and uncorrected

bicowio BN ogl sy g

CT’ CL’ and CM is noted.




-151-

thrust distributions. The PW (1,1) term is shown to he
relatively constant for all a, and shows excellent agrecement
with the AD (1,1) term (6% error). It should be remembered
that the AD (1,1) term is independent of either thrust
distribution or rotor angle-of-attack. This excellent degrec
of correlation is amazing, when it is remembered that the

PW integration of induced velocities and air loads is

crude with respect to: assumed constants, assumed 1lift,
and constant induced velocity for the rectangular integration
scheme in the radial direction. The PW L(3,1) term also shows
good correlation with the corrected AD values. The shift in
angle-of-attack, «*, is seen to play an important role in
aiding the correlation.

Figure 58 is the second column of the prescribed-wake
L-matrix, which is the induced flow due to a rolling moment.
(The Actuator-Disc Theory predicts that the corrected and
uncorrected (2,2) terms should be equal for a > Zfﬁ. The
PW L(2,2) term shows excellent agreemént in this range. The
third column of the PW L-matrix, induced flow due to a
pitching moment Cm» is presented in figure 59. The (1,3) and
(3,3) terms also show excellent agreement with both the
magnitudes and slopes of their respective actuator disc
values. In the range of the prescribed-wake data, the

corrected and uncorrected moment distributions have 1little
effect on the AD L(1,3) and L(3,3) terms. It appears that

the PW L(3,3) is approaching zero for the case of edgewise
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flight. The PW L(2,1) and L(1,2) terms are less than 0.0S
for all cases, and are essentially zero as predicted by the
AD theory.

Most of the dynamic-inflow theories to date, including
the Actuator-Disc Theory developed during this research,
predict that the (3,2) and (2,3) terms of the Lematrix arg

zero for all ao. The (3,2) term is v cosine or fore-to-aft

C’
induced velocity, due to CL (rolling moment); and the (2,3)
term is o sine component of induced velocity, due to CM

(a pitching moment). Nonzero values or cross-counling terms
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are predicted by the prescribed-wake theory, and are shown
in figures 58 and 59. Both terms appear to be constant with
respect to o, It is interesting to note that L(3,2) is
approximately -0.2 and that L(2,3) is 0.2. Thus, 1.(2,3)

= -L(3,2) for the prescribed-wake L-matrix. 7This is
qualitatively similar to the empirical model, reference
(60), in which L, =

23 = L3
The natural explanation of these coupling terms is that

is found at low a.

they represent the induced velocity caused by the rotor -
wake rotation. Bramwell (72) states that the rotation or swirl
velocity is due to the bound circulation about the blades

and the circulation due to the spiral vortex lines forming
the slipstream. Bramwell relates the swirl velocity to

disc loading and shows that the velocity caused by the wake
rotation is small when compared to the other induced velcoity
terms. The PW L(3,2) and L(2,3) terms are small with respect
to the other numbers in the column as seen in figures 58 and
59. Because the swirl velocity is a function of the rotor
disc loading, it is felt that the PW L(3,2) and (2,3) terms
will vary slightly with thrust. The value of swirl angle

required to produce these terms is about 6°, which is the

same order-of-magnitude as the swirl angle for this case.
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6. CONCLUSIONS AND RECOMMENDATIONS

The inflow models used in this research consist of:
(1) Steady Actuator Disc-Corrected and Uncorrected

radial load distribution.

(2) Unsteady Actuator Disc-Superposition of Pressure
(S.P.) for both the corrected and uncorrected radial load
distributions.

(3) Unsteady Actuator Disc-Superposition of Velocitics

L (§.V.) for both the corrected and uncorrected radial 1load
distributions.

(4) VUnsteady Actuator Disc-Analytical 3X3 L and M
Matrices.

(5) Prescribed-Wake Model
The induced-velocity distribution for each inflow model is
numerically integrated over the rotor disc for three
independent pressure distributions to obtain the L-matrix.
Models 1 - 3 provide both a standard 3X3 nonuniform inflow
L-matrix, and an extended 5XS L-matrix that includes second-
harmonic velocities and loadings. The fourth model represcnts
an analytical formulation of induced flow based on the results

of models 1 - 3. The fifth model includes wake contraction,

wake rotation, and finite number of blades. Thus, it serves
as a measure of accuracy for the simpler, actuator-disc

models.

6.1 CONCLUSIONS CONCERNING THE STEADY, ACTUATOR-DISC MODEL
Some of the more important conclusions of the stcady

actuator-disc rcscarch are:
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(1) The steady, actuator-disc theory for dynamic
inflow is based on the Mangler-Squire Theory. The induced
velocities calculated by the Mangler-Squire Theory arec shown
to agree with measured results of reference (12).

(2) 1In axial flow (e.g. hover), the gains (elements of
the 3X3 L-matrix) are identical to those obtained from simple
momentum theory, and are independent of the radial 1lift
distribution.

(3) The fore-to-aft induced velocity gradient (L(3,1)
in dynamic inflow or K in Glauert Theory) varies with a
in the same manner predicted by the wake skew angle formula
of simple vortex theory.

(4) Closed form results are obtained for all elements
of the L-matrix at o = 90° (axial flow), for all elements
of the L-matrix at a = 00 (edgewise flow), and for the first
column of the L-matrix at all angles-of-incidence, a.

(5) For a thrust loading and edgewise flow, the
cosine harmonics of induced velocity, L(3,1) and L(5,1), are
large with respect to the average value L(1,1). For the
other loading conditions, at a = 09 all the higher harmonic
elements of the L-matrix are small save for L(5,5).

(6) Numerical results for the elements of L at angles-
of-incidence from 0° to 90° show that they are not strongly
dependent upon 1lift distribution for 10° < a < 900, although
significant dependence does occur for a < 10°.

(7) A 3-degree-of-freedom dynamic-inflow model is

probably adequate for rotary wing dynamics.
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(8) Both the 5X5 and 3X3 steady L-matrices are well

behaved and invertible as a varies from 90° to 0°.

(9) The upper 3X3 portions of the inverted, steady
5X5 and 3X3 L-matrices are in agreement for typical valucs
of .

6.2 CONCLUSIONS CONCERNING THE UNSTEADY, ACTUATOR-DISC MODEL

In the unsteady, actuator-disc research, the invertcd
complex L-martrices of the S.P. and S.V. methods are compared.
The following are the conclusions from this phase of the
research:

(1) The apparent mass terms (the M-matrix) for the
uncorrected pressure distributions are identical to the
apparent mass terms of an impermeable disc, but these values
vary significantly with lift distribution. The uncorrected
terms are always larger than the corrected values.

(2) The apparent mass terms are more sensitive to
the 1ift distribution than are the corresponding terms in
the L-matrix.

(3) The apparent mass terms (for either corrected or
uncorrected distributions) decrease with increasing harmonics
of induced velocity.

(4) The apparent mass terms of the S.V. method approach
those of the S.P. method at high reduced frequencies (K).
However, for small K, the S.V. and S.P. apparent mass terms
are considerably different.

(5) For o ¢ 90° and K » 0, the S.V. method predicts

imaginary terms for some of the off-diagonal elements while
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the S.P. method does not. However, these arc small with y
respect to the diagonal terms. L

(6) The real part of the complex, inverted L matrix $
is constant with K for the S.P. method, but varies with
both a and K for the S.V. method. This difference between l}
the methods is largest at high values of K, where the
imaginary part is dominant and the real terms are negligible.
6.3 CONCLUSIONS CONCERNING THE PRESCRIBED-WAKE MODEL

The conclusions of the prescribed-wake program are:

(1) Generally, a given rotor control perturbation, (0)

will result in a larger perturbation in C_. than in Cp or Cy.

T
(2) The prescribed-wake L-matrix agrees favorably with

the L-matrix from the actuator-disc model, provided that the

V and a* parameters are chosen based on momentum considerations.
(3) The prescribed-wake L-matrix has antisymmetric

or cross coupling terms, L(3,2) and L(2,3), which are constant

with a. These are not predicted by the Actuator-Disc Theory.

These are due to the wake rotation associated with lifting
rotor. For realistic values of rotor power, however, thesc
are only about 10 percent as large as the diagonal terms.
6.4 COMMENTS CONCERNING THE ANALYTICAL MODEL

The analytical modelis given in tables 3 and 4. The
first column represents the closed form results of equation
for a corrected thrust distribution. The uncorrected thrust
distribution is unrealistic of a lifting rotor. The second

and third columns are for uncorrected roll and pitching
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moment distributions. Thecre arc several recasons for this
choice in the second and third columns:

(1) Either the corrected or uncorrected moment-
distribution of figure 7.2.2 would be reasonable for the
first-harmonic variation of 1lift.

(2) Figures 11 - 12 show that the two distributions
give nearly identical results (for L(1,3), L(2,2) and L(3,3)
when a > 10°).

(3) The analytic L-matrix (for a* and v defined by
equations (119) and (31)) show excellent agreement with
prescribed-wake results. (For a loaded helicopter rotor
an > ¢° generally).

(4) The uncorrected distributions follow smooth curves
that appear to be identical to the g-functions in equation
(117a-c).
The M-matrix is chosen for thi§ same mixture of corrected
and uncorrected load distributions. The choice of uncorrected
apparent mass for M(2,2) and M(3,3) is also consistent with
experimental results in reference (63) that show that these
give realistic time constants. An eigenvalue analysis of
[L] [M] (the eigenvalues are the time constants) shows that
there are no anomalies in the system. The induced flow has
three real, stable roots for all values of a between 0o and
900; and L is always invertible.
6.5 RECOMMENDATIONS FOR FURTHER RESEARCH

The recommendations for future research are in two

areas: 1) Unstcady, Actuator-Disc Theory and 2) Prescribed-




-159-

Wake Theory. The following work is recommended to further
substantiate the present dynamic inflow model.

(1) The unsteady program should be exercised to use
more than 10 radial blade stations and to decrease azimuthal
increments a< gjto increase accuracy of L-matrix calculations
for a < 10°.

(2) Windtunnel festing should be conducted to verify
both the unsteady aerodynamic load distributions (CT, CL, CM)
and the unsteady induced velocities. This would help to
physically explain the transition of the L-matrix from a =
90° to a = 0°.

(3) Stability and dynamic response of a helicopter
rotor should be calculated for 3X3 and 5X5 L-matrices as
well as for both the S.P. and S.V. inverted complex L-
matrices. This would provide added insight into the
differences of the two methods.

The prescribed-wake computer vesearch provided knowledge
of the effects of finite blades and wake contraction on
the L-matrix. This was the first successful attempt at
using a Prescribed-Wake Theory to develop a dynamic inflow
model. Therefore, the following ideas are offered for
future study:

(1) One should develop an empirical model to estimate
the wake rotation or swirl effects. The prescribed-wake
program could be used to correlate the empirical model at

high and low thrust levels.
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(2) Thought should be given to modifying the PW
program to interpolate the blade circulation at Gauss
points and change the azimuthwise integration from
rectangular to trapizoidal; thus, increasing the accuracy
of the blade-load calculations.

(3) It would be interesting to use the PW program
to develop an L-matrix for autorotational flight. It would
be very useful in vortex-ring state, where momentum theory
is not valid.

(4) Someone should use an unsteady, prescribed-wake
model to discover the effects of wake contraction and finite

number of blades on the apparent mass terms.
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APPENDIX 7.1

Actuator Disc Coordinate System

We define a Wind-Axis, Cartesian Coordinate System

. o

(x', y', z') by a rotation of the (x, y, z) Disc Coordinates

through an angle o about the y/y' axis. The angle o is the

disc incidence angle. We further nondimensionalize the
Cartesian coordinate systems on the disc radius R. The new
Disc and Wind Coordinate Systems are called X', Y', Z' and

X, Y, Z respectively and are given in equation 7.1.1 3

X, Y, 2) =1 (x, y, z) (7.1.1)
R
x', Y', 2')y =1 (x', y', z') '3
R £
?
Both the Wind and Disc Coordinate Systems are depicted in

figure 7.1.1. 3

zl

Figure 7.1.1. Wind and Disc Cartesian Coordinate Systems
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The transformation between the two coordinate systems }

is given by
X cosa 0 -sina Xt (7.1.2)
Y = 0 1 0 Y!
Z sina 0 cosa A
X! cosa 0 sina X ;
Y! = 0 1 0 Y ?
z! -sina cosa Z :
The Curvilinear Coordinate System (Ellipsoidal Coordinate
System) v, n, ¢ is defined in equation 7.1.3

/ ry / 2 (7.1.3)
X! = - 1 - 1 +n cosy

2 2
Y! = )/ 1 - v 1 +n siny

Z!

-yn

The Curvilinear Coordinate System (Ellipsoidal Coordinate

System as shown in figure 7.1.2 will cover the entire three

dimensional space once and only once if the restrictions
given below are enforced.

(7.1.4)
-1 < v < +1

0<n_<_eo

0 <y < 2Zm
In the Ellipsoidal Coordinate System, n = 0 is on the rotor
disc and the coordinate v changes signs as it crosses the

disc surface. The inverse transformation from the Disc

Coordinate System, X', Y', Z' to the Ellipsoidal Coordinate
System is given by
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(7.1.5)

[
[

2
(sgn Z2') //j-f + //k?-l)z + 42!
n= -1 //;jl + //(K-l)z s a4zt

2

N

S|

- 2 2
Where K = X' + Y' + Z!
-1 R
Y = tan (-%—)
On the disc, equations 7.1.3 are used to relate the non-

dimensional blade radius to the ellipsoidal coordinates.

This yields

«

r2 Rz(l - vz) (7.1.6)
n=20

The following identity is required to perform thrust, pitch,

and roll force integrations

(7.1.7)

R
(T) - £(F) r " dr =
fL U(r) T
0
0 ) 0 )
n+1 2 E?l n+l 2 Efl
- R f(v)v (1-v ) ° dv + | R f(v)v (1-v ) dv =
1 1

*1 n-1

n+1 2~
-R f(V)V (1-V ) dv =

o ) e g o
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n-1
2
SREGIY (1-v) & dy, f(v) odd

0, f(v) even

Figure 7.1.3 depicts the relationship between the rotor
disc and the streamline along which we integrate to dctermine

the induced velocity at a point on the disc.

c %
= 2 @
3 F A
4 e
P
wl Y N
< o
> o
< .'L"’ -t
o A\
LY o
L w0
3
«\.Q -
. ,
B ~eQ V-
X w3
-
- w-.s
¥ "6
L‘\
>
b.\
]
“
.
. "
1
%
\
z v
o

Figure 7.1.2. Curvilinear Coordinate System (Ellipsoidal
Coordinate System)
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Y,Y'

STREAMLINE

a) Top View

STREAMLINE

b & 2’

b) Side View

Figure 7.1.3. Integration of Induced Velocity Along a
Streamline in the X Direction

ahiini i Coseniagiol




|
|

-167-

APPENDIX 7.2

Legendre Polynomials and Their Associated Propertics

The following Legendre Polynomials of the first kind
are required to evaluate the Mangler-Squire pressure
distribution. The following formulas are applicable when
-1 < v <1
(7.2.1)
P(v) = v

2
PS(v) = 3(5v -3)
P%(v) = -3v/1-v2

PL(V) = -Jv(7v2-3)/1-2

2 2
P3(v) = 15v(1-v*)
For the induced velocity calculations, we need to

determine d Pm(v). The following recursive formula can be
d v

used to find the derivative of the Legendre functions of the

first kind.

m m m
v v n+m
i 5 ) - %YTIPH(V) - Gf??pn'l(v)

To determine the derivative of the polynomials given in
equation (7.2.1) using equation (7.2.2), we require the

use of the following polynomials.

(7.2.3)

pg(v) =1

P3(v) = %(3v2-1)
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Pi(v) = - 1-\)2
Pg(v) = '%(sz-l) 1-3°
PZ(v) = 3(1-v%)

The Legendre Polynomials of the first kind have the following

properties of orthogonality and normalization.

1
Orthogonaltyjf Pg(v) PQ.(V)dv =0 for n # n' (7.2.4)
0

1 \ ,
Normalization_-/; [P’:l'(\,)]zd\) = §n+1"(n+m)i (7.2.5)

Legendre function of the second kind for Z outside the
segment (-1, +1) can be expressed in general form

(7.2.6)
z
Q(z) = § log 21

The Mangler-Squire pressure distribution requires that the
Legendre Ploynomials of the second kind be complex (i.c.

Qﬁ (in)). The general form of the polynomials will involve
the natural logarithm of the complex number (in+1)/(in-1).
This problem is circumvented by the use of the following
identity obtained from reference 73.

+z (7.2-7)

i-2

[

i
tan Z = 7 log

A representative example of obtaining complex Legendre

functions will be performed by transforming equation (7.2.6)

for our variable Z = in

W BT e Soetas DRIV - R

o oo e
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. (7.2.8)
i = l lo in+l
Q (in) = 5 108 ==
(1 = 2 1"1/
QO n) 7 log 171.7-%

use of equation (7.2.7) and the fact (-i)-(-i) = 1 yields

. . -1 (7.2.9)
Qo(ln) i tan o
Making usc of the above procedure, results in the {following
Legendre functions of the second kind which are required for

the pressure distribution equation

Q©(in) = ntan L. (7.2.10)

Qg(in) = '%(5n2+3)tan-1% + %nz N %

Qé(i”) = 3in/1+n? tan'I% -31/1? + 711_,,7

Qy(in) = '%i“(7n2+3) 1+n2tan'1% s %1(21n2+2)/4j;z v
1+n

Qifin) = -15n(1+n2)tan'1% + 15,,2 + 10 - f%§7

As previously stated in section 3, the functions Q: (in)
are evaluated on the rotor disc which requires n = 0. Thus,
to determine Qﬂ (ip) one must find tan~l 1/0 which could be
troublesome to the computer. Noting that for our Ellipsoidal
Coordinate System that n > 0 we can use the following

relationship which is obtained from reference 74 to evaluate

the functions on the disc

A

o T T e e SRR 1t e~

T — W
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(7.2.11)

-1 7 -1
tan ﬁ'Z - tan N
whenn=0 tan'l 0 =0

-]1 1
tan N =3 (7.2.12)

n-=+0

For the induced velocity calculations, we need to determine d Cﬂ (in),

dn
The following recursive formula can be used to find the derivative of
the Legendre function of the second kind.

(7.2.13)

d d;;(in) nn m,. (n+m)i 4m .
= — (in) + Q,_1(in)
T Lk 1en2 071

Therefore, to determine the derivative of the polynomials
given in equation (7.2.10) using euqgaiton (7.2.13), the

following additional polynomials are required.

- 7.2.14

Qg(in) = -itan 1% ( )
. i 2 - 3.

Q9(in) = z(3n"+1)tan™11 - 3in

1 3 2 2 '1] 15,/ 2 n
i = -= (5n tan < + 22nv l+n -
QG EM 2 (5N +1)/1+n o 2 /e
2, _ . 2 -1 . 2in
Q2(1n) = 3i(l+n")tan "= -3in - T3
n 1+n

Using equation (7.2.12), the Legendre functions of the

second kind on the rotor disc can be explicitly determined

and are given below
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_ - 1 _ (7.2.15)
Qg(io) = -3i 0,(io) = -2i |
o, - -1 1 . 3 -
Ql(lo) = - QS(IO) = -Zn
8
o) . .
Qp(i0) = %i Qi(lo) = 7i
o 2 2
- (1 = = c . 3m
QJ(IO) 3 QZ(IO) = —21
2
q (10) = % Qz(i0) = 8
In the pressure distribution equation, the Legendre
functions of the second kind Q%(in) and Qi(in) are complex
1
and the constants that premultiply them, C% & D% and C, & Dy

respectively, are also complex. Consequently, the pressure

distribution will consist of real values. The recursive

formula for the derivative (7.2.13) includes the complex i
in the second term, this insures that derivatives of the £
complex Q functions will be complex and derivatives of rcal

Q functions will be real. For example, finding the derivative

1 A
of Q4(in) which is complex, requires the usage of Qi(ln) which

is real
1,. (7.2.16)
in 1 5i )
d Q4( ) - 4n2 QA(ln) . —_lf QS(ln)
d n 1+n

Because the Q functions alternate between real and complex
numbers, the recursive derivative formula is useful. The
complex algebra will be circumvented in the computer program
by noting that all terms in the pressure distribution, arc
rcal. Thus, the multiplication of the complex Q functions

by their respective complex constants is handled by the
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negative of the product, because i‘i = -1. For example,
Q}(in)-ci is handled as -Q%(in)-ci where the complex i
has becen disregarded.

Figures 7.2.1 through 7.2.3 are plots of the lLegcendre
Polynomials of the first kind evaluated on the rotor disc.
Also depicted in these figures are the corrected load
distributions that result from combinations of the polynomials.
The Legendre Polynomials of the second kind, Qg(in), are shown
in figures 7.2.4 through 7.2.6. It is noted that all the
Qg(in) polynomials become zero as the ellipsoidal coordinatc
eta approaches infinity. However, the rate of decays arc
different, with Qg(in) decaying at the slowest rate. At

an eta of 4.0 it is the only polynomial that is nonzero.
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APPENDIX 7.3

Actuator Disc Aerodynamic Loading

The purpose of this appendix is to describe the
various aerodynamic loadings associated with the Legendre
Polynomials. Due to the orthogonality of the Legendre
Polynomials the property of superposition holds. Conse-
quently, each loading will be described separately. The
actual trim flight loading condition will be represented
by a combination of all the loading conditions.

Figure 7.3.1 depicts a loading condition that only
has a radial variation. This loading is called the un-
corrected thrust distribution, and is given by equation
7.3.1 on the rotor disc.

(7.3.1)

P = 'SCTPg(v)
4v2

The thrust loading is corrected with the use of Pg(v) term.
This will yield zero 1ift both at the hub and edge of the
disc. This loading is shown in figure 7.3.2. It should be
noted that the thrust loading only varies in the radial di-
rection and has no azimuth variation.

A negative pitching moment is shown in figure 7.3.3.
The loading varies in the azimuth direction as cosy. The
loading will be zero at ¥=90° and ¥=270°. It should be

noted that the harmonic airloads (pitch moment, roll moment,
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etc.) do not change the total thrust on the disc, but only
changes its distribution.

Figure 7.3.4 is a negative rolling moment and is seen
to have maximum value at y=90° and ¢=270°. At an azimuth
position of y=0° and 180° the loading is zero. The rolling
moment varies as siny.

The second harmonic aerodynamic loadings vary as
cos2y and sin2y and are shown in figures 7.3.5 and 7.3.6
respectively. These loadings will be zero at four azimuth

positions.
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Figure 7.3.5. Negative Second Harmonic Loading
Distribution of cos2y
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Figure 7.3.6. Negative Second Harmonic Loading
Distribution of sin2y
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APPENDIX 7.4

Unsteady Actuator Disc-Supplemental Data

The remaining unsteady actuator disc results are
presented in the appendix. Figures 7.4.1 - 7.4.10 are
the magnitudes of the second through third column of the
complex inverted 5x5 L-matrix. The phase angles are pre-
sented in figures 7.4.11 - 7.4.20. Figures 7.4.21 -
7.4.30 are the imaginary terms of the complex inverted
L-matrix. The deviations between the S.P. real part and
S.V. real part are presented in figures 7.4.31 - 7.4.40.
Finally, the differences between the upper 3x3 of the

S.V. 5x5 inverted complex L-matrix and the S.V. 3x3 invert-

ed complex L-matrix are shown in figures 7.4.41 - 7.4.43,




&

w

lllJlllllllllllll

-

¢ S 10

Figure 7.4.2
Magnitude of the
(4,2) Element of
Inverted Complex
L(K) Matrix for

e Sweep (Corrected
Pressure)

15

0.3

o.a

REDUCED FREQUENCY - K

o1"II]TII]'111'T7YY]"1T]'"T

Tigure 7.4.1
Jagnitude of the
(2,2) Element of
Inverted Complex
IL(K) Matrix for

o Sweep (Corrected

Pressure)
-] 2% 30
a————&6 ALPHA = 90. DEGREES
O————6 ALPHA = 60. DEGREES
O——© ALPHA = J0. DEGREES
*———% ALPHA = S, DEGREES
MAG. CMPLX LINU(4,2)

REDUCED FREQUENCY - K

- —————— - — ——— A RSN et 2o



90. DEGREES
€0. DEGREES
30. DEGREES

S. DEGREES

D

c

B

k4

>
«ases

1.5

MAG. CMPLX LINU(1,3)

Figure 7.4.3
Magnitude of the
(1,3) Element of
Inverted Complex
L(K) Matrix for

o Sweep (Corrected
Pressure)

@ 5 10 15 20 a5 30

REDUCED FREQUENCY - K

» 90. DEGREES
= 60. DEGREES
e 30. DEGREES
= 5. DEGREES

E

Figure 7.4.4
Magnitude of the
(3,3) Element of
Inverted Complex
L(K) Matrix for

a Sweep (Corrected
Pressure)

w

n
Jlilull(l_lll(ll

E ]

._l'TITII‘]T1IT111'IIV‘IIIII—|YI

o ] 10

15 ae 2% 30

REDUCED FREGUENCY - X

Koo b el




[pENEREPI A W < - . .

-184-

TR e

9. DEGREES
606. DEGREES
30. DEGREES
6. DEGREES

>
=
v
z
>
aswn

Figure 7.4.5
Magnitude of the
MAG. CMPLX LINU(S,3) (5,3) Element of
Inverted Complcex
L(K) Matrix {or

a Sweep (Corrected
Pressure)

Q.15

0.10

e.05

PSP T

] ] 1@ 15 20 a5 30
REDUCED FREGUENCY - K

90. DEGREES

60. DEGREES :
30. DEGREES :
S. DEGREES ;

>
c
v
x
>
L B BN ]

MAG. CMPLX LINV(2,4)

Figure 7.4.6
Magnitude of the
(2,4) Element of
Inverted Complex
L(K) Matrix for

a Sweep (Corrected
Pressure)

REDUCED FREQUENCY - K




A———b ALPHA ¢ 90. DEGREES
G—8 ALPHA « 6Q. DEGREES
O——© ALPHA ¢ 30. DEGREES
. v—¢ ALPHA = 5. DEGREES

Figure 7.4.7

- n
- .
an . ]

-
.
®
lLlJlllllllllJl

o
n

Magnitude of the
(4,4) Element of

.00|I"l]_TlTTlYIIYT"FIIY]IYTYITTII
e S 1 ] 15 20

REDUCED FREQUENCY - K

O——© ALPHA
P———% ALPHA

Inverted Complex
L(K) Matrix for
o Sweep (Corrected
Pressure)
25 30
&———=8 ALPHAR = 90. DEGREES
@——— ALPHA = 60. DEGREES

30. DEGREES
5. DEGREES

0.6
Figure 7.4.8
Magnitude of the
(1,5) Element of
snverted Complex
L(K) Matrix for
a Sweep (Corrected
Pressure)

MAG. CMPLX LINV(1,5)

REDUCED FREQUENCY - X




-186-

s nom s dotens
O———0 ALPHA » 30. DEGREES
O———% ALPHA * 5. DEGREES Figure 7.4.9
0.3 tagnitude ¢
llagnitude of the
. MAG. CMPLX LINV(3,5) (3%5) Element of

Inverted Complex
L(K) Matrix for
a Sweep (Corrected

Pressure)
15 20 25 30
REDUCED FREQUENCY - K
&—— b ALPHA = 90. DEGREES
B————- ALPHA = 6@. DEGREES
O——© ALPHA « 30. DEGREES
Y—% ALPHA = &5, DEGREES

Figure 7.4.10
Magnitude of the
(5,5) Element of
Inverted Complex
L(K) Matrix for

a Sweep (Corrected
Pressure)

n
.
[

MAG. CMPLX LINVU(5,5)

-
.
(1]

oY
-
o

lllllllllllllll

[ ]
.
v

o‘o]lIl'l'l"l"TlI'YTl]l'1‘]1l‘T

] s 10 15 20 25 3e

REDUCED FREQUENCY - K




-187-

------------ choe g8 Beemes igure 7.4.11
cooIooT * bo. igure 7.4.
-------- . 39. R
—_——— 2&?32 . 30. BEEREES Phase Angle of the
100 4——— (2,2) Element of
Inverted Complex
7 L(X) Matrix for o
80— e ——— - Sweep (Corrected
: J ////—:-‘__,—':-._.:._;-._;_.____:-_-—:‘_'._T-'-T"‘.‘- Pressure)
$ €0 — e e T
E Ve ’z' L
4 - .=
A r I/,/.;‘/"
N 40—l /7
¢ “
E It
2ol COMPLEX LINV(2,2)
f
T
o TIUIITY—I] TYT1TT117"I7IT]7j7
] s L2 15 20 25 30
REDUCED FREGUENCY - K
&———4& ALPHA = 90. DEGREES
G-————=8 ALPHA = 60. DEGREES
——© ALPHA = 30. DEGREES
¢———— ALPHA = 5. DEGREES

Figure 7.4.12
Phase Angle of the
(4,2) Element of
Inverted Complex
L(K) Matrix for a
Sweep (Corrected
Pressure)

Mmoo MODIO

490

COMPLEX LINU(4,2)

L=~

-1

1711]11!1rr1vl[11T‘l

5 1 15 20

REDUCED FREQUENCY - K

as

T
30




& —& ALPHA
8 -———& ALPHA
G- —© ALPHA

v--———=7 ALPHA

MeOZ® MAODPIO

90
30

-188-

DEGREES
DEGREES
DEGREES
DEGREES

N U D R —
COMPLEX LINV(1,3)

Figure 7.4.13
Phase Angle of the
(1,3) Element of
Inverted Complex
L(X) Matrix for o
Sweep (Corrected
Pressure)

t -1 o e R e B R SR L B AL BLAL ILBLELIL

] S 1¢

15

= es Je

REDUCED FREGUENCY - K

Figure 7.4.14
Phase Angle of the
(3,3) Element of
Inverted Complex
L(K) Matrix for «
Sweep (Corrected
Pressure)

Mo MudDIv

100

-~J
wni

o
o

[4Y]
"n

-25

............ ALPHA » 90. DEGREES
——————— ALPHA = 60. DEGREES
....... ALPHA = 30. DEGREES
——-—— ALPHA = S, DEGREES
]
-4
. —— T T
j /\”.’;-"
- ~”
1 ./
3 A
= 2l
14
:ﬁ/ /
_;La\! COMPLEX LINV(3,3)
rTIT'ljllwlflll7ﬁ71ﬁ1l]—lll1
e s 10 18 20 as J0

REDUCED FREQUENCY - K




- en o

A ALPHA
G— ——€ ALPHA
O-———0 ALPHA
*——-—% ALPHA

-189-

: 3 s
« 36. DEGREES Figure 7.4.15
« 5. DEGREES Phase Angle of the

100

p 50
H
A
;
°
]
N
G
L
E -50
-100

Figure 7.4.16
Phase Angle of the
{(2,4) Eiement of
Inverted Complex
L{K) Matrix for o
Sweep (Corrected
Pressure)

COMPLEX LINU(S, )

(5,3) Element of

Inverted Complex

L{K) Matrix for «
Sweep (Corrected

"ressure)

i@
REDUCED FREGUENCY -~ X

meoOI8 MAODIO

T‘r‘T‘I‘T‘T’TrovTI1‘r‘lT’11|T1!7!|
3

18

-159

29 25 3e

&— ——b ALPHA
G————=E ALPHA
O—————0 ALPHA
Y ALPHA

90. DEGREES
€0. DEGREES
30. DEGREES
©. BDEGREES

COMPLEX LINUV(2,4)

IT"Ittr]|1!(,11YrTT‘T’TT’TT‘T
-] 10 15 20 25 30

REDUCED FREQUENCY - K

s

L5 e et




90. DEGREES
©€0. DEGREES
30. DEGREES
5. DEGREES

[
|
!
|
>
[
b
X
>
aens
[

. |
100 — Figure 7.4.17
. Phase Angle of the
- R (4,4) Element of
P R PSP PEPET At rt et o st Inverted Complex
4 . e L(K) Matrix for «
8 oo fzzae Sweep (Corrected
g ? L Pressure)
A ] ,47
N 25+ /7
[ 17y
L By /
E ¥ ‘
e J COMPLEX LINU(4,4)
1
‘35':"17'11—"11lrllrITlrI1ﬁ|I1I|]vTrl
o s 10 15 co a5 30

REDUCED FREQUENCY - K

oH————a ALPHA
G———8 ALPHA
O——© ALPHA
*——v AlLPHA

90. DEGREES
60. DEGREES
30. DEGREES
S. DEGREES

100

Figure 7.4.18
Phase Angle of the
(1,5) Element of
Inverted Complex
L(K) Matrix for a
Sweep (Corrected
Pressure)

COMPLEX LINV(L,5)

meeoTd> MOdDIv

] s 10 15 a0 as 30
REDUCED FREQUENCY -~ K

- - . et




-191-

&———4 ALPHA = 90. DEGREES
G————8 ALPHA = 60. DEGREES
O————6 ALPHA = 30. DEGREES ]
. @-——— ALPHA ¢ 5. DEGREES

COMPLEX LINV(3,5)

100 Figure 7.4.19
Phase Angle of the
(3,5) Element of
50 Inverted Complex
P L(K) Matrix for a
2 Sweep (Corrected
E ] Pressure)
A
N -50—
G
L
E
-160—
-150 Ir1l|llll]Tlllltl1T]T'
() S 10 15 20 es J0
REDUCED FREQUENCY - K
------------ ALPHA = 90, DEGREES
--=-~---- ALPHA + 60. DEGREES
-------- ALPHA « 30. DEGREES
—-——— ALPHA = S, DEGREES
80 Ep————
. ] I ettt
Figure 7.4.20 NG Lot T
Phase Angle of the 60— |-
(5,5) Element of ﬁ |,
Inverted Complex A - 10"
L(K) Matrix for a g 7
Sweep (Corrected 40— /4
Pressure) A /I
N 1 /XU
G )~
Eoao/f
ao_l/ COMPLEX LINU(S,S)
1]
) s 10 15 20 25 30

REDUCED FREGUENCY - K




--------- ALPHA = 90. DEGREES
- - - ALPHA « 60. DEGREES
-~ -- ALPHA = 30. DEGREES

e S. DEGREES

- -Zo.I- aLPHA

_R .
: '-T\\\,
NN
, .}\.\

LIS

uiadit e 2t ol e e ol B e S it LI R SAA BLUR SLEL SR
20 s 30

9 S 10

~
~.
Ao,
a1

15

e e e e e mmam - m— —— ———— e

o [p— -
7h\‘%g.\ IMAGINARY TERM - CUPLX LINV(2,2)

RFEDUCED FREQUFNCY -~ K

Figure 7.4.22
Imaginary Term of
the (4,2) Element
Inverted Complex
L(K) Matrix for «
Sweep (Corrected
Pressure)

&- —— —a ALPHA
3-- - - -8 ALPHA
9 — -—-—© ALPHA
g-—~-——% ALPHA

e

Figure 7.4.21
Imaginary Term of
the (2,2) Element
Inverted Complex
L(K) Matrix for o
Sweep (Corrected

Pressure)

90. DEGREES
60. DEGREES
30. DEGREES
S. DEGREES

IMAGINARY TERM - CMPLX LINV(4,2)

TITIY YT I T v vy
S 10

15 20 as

REDUCED FREQUENCY - K

c———y

30




-193-
B e e ol “LPH“ ] 90. DEGRLES
——-—€ ALPHA = 69. DEGREES
o g‘iPm\ » 30. DEGREES rigure 7.4.23
g e = < ALPHA = 5. DEGREES Imaginary Term of
Bt -t P b - —— the (1,3) Element
Inverted Complex
Ragn o n S L L(K) Matrix for a
' T Sweep (Corrected
bt 2 T
”71 s o Pressure)
A N
/)‘\ I ¢
v—"? ..
P »-J'
-90.6
: IMAGIMMRY TERM - CHPLX LINVLE,3)
-9.8 AL o L S IR A 1Ty T T
0 5 10 15 20 25 30
REDUCED FREQUENCY - K
............ ALPHA « 99. DEGREES
—-~-— — ALPHA = 60. DEGREES
_____ ALPHA = 30. DEGREES
ALPHA = S, DEGREES
Figure 7.4.24 ]
Imaginary Term of 3
the (3,3) Element ]
Inverted Complex -1
L(K) Matrix for a N
Sweep (Corrected .
Pressure) .
-a—.
. 3
- =
] |
-4 YT I T Y 1Y
S 10 15 20 25 30

REDUCED FREQUENCY - K




-194-

HA— ——8 ALPHA = 90. DECR